8 research outputs found

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity

    A single-amino-acid variant of the H60 CD8 epitope generates specific immunity with diverse TCR recruitment

    No full text
    TCR of CD8 T cells recognizes peptides of 8–9 amino acids in length (epitope) complexed with MHC class I. Peptide ligands differing from an epitope by one or two amino acids are thought to modulate the immune response specific to that epitope. H60 is a minor histocompatibility antigen for which the specific CD8 T-cell response dominates during alloresponse after MHC-matched allogeneic transplantation. In the present study, we developed a transgenic mouse (designated H60H Tg) expressing a variant of H60, designated H60H, in which the arginine residue at position 4 of the H60 epitope sequence (LTFNYRNL) is replaced by a histidine residue (LTFHYRNL). Immunization of female C57BL/6 mice with splenocytes from male H60H Tg induced a CD8 T cell primary response and memory response after re-challenge. The response was CD4 help-dependent, demonstrating the potency of H60H as a cellular antigen. The response induced by the H60H cellular antigen was comparable to that induced by H60 in its peak magnitude and overall immune kinetics. H60H challenge recruited broadly diverse TCRs to the specific response, shaping a TCR repertoire different from that of the natural H60 epitope. However, some of the TCRs did overlap between the H60H- and H60-specific CD8 T cells, suggesting that H60H might modulate the H60-specific response. These results may provide a basis for the modulation of the H60-specific CD8 T-cell response

    Serine protease inhibitor 6 plays a critical role in protecting murine granzyme B-producing regulatory T cells

    No full text
    Regulatory T cells (Tregs) play a pivotal role in the maintenance of immune tolerance and hold great promise as cell therapy for a variety of immune-mediated diseases. However, the cellular mechanisms that regulate Treg maintenance and homeostasis have yet to be fully explored. Although Tregs express granzyme-B (GrB) to suppress effector T cells via direct killing, the mechanisms by which they protect themselves from GrB-mediated self-inflicted damage are unknown. To our knowledge, we show for the first time that both induced Tregs and natural Tregs (nTregs) increase their intracellular expression of GrB and its endogenous inhibitor, serine protease inhibitor 6 (Spi6) upon activation. Subcellular fractionation and measurement of GrB activity in the cytoplasm of Tregs show that activated Spi6-/- Tregs had significantly higher cytoplasmic GrB activity. We observed an increase in GrBmediated apoptosis in Spi6-/- nTregs and impaired suppression of alloreactive T cells in vitro. Spi6-/- Tregs were rescued from apoptosis by the addition of a GrB inhibitor (Z-AAD-CMK) in vitro. Furthermore, adoptive transfer experiments showed that Spi6-/- nTregs were less effective than wild type nTregs in suppressing graft-versus-host disease because of their impaired survival, as shown in our in vivo bioluminescence imaging. Finally, Spi6-deficient recipients rejected MHC class II-mismatch heart allografts at a much faster rate and showed a higher rate of apoptosis among Tregs, as compared with wild type recipients. To our knowledge, our data demonstrate, for the first time, a novel role for Spi6 in Treg homeostasis by protecting activated Tregs from GrB-mediated injury. These data could have significant clinical implications for Treg-based therapy in immune-mediated diseases
    corecore