25 research outputs found

    Microhabitat associations and seedling bank dynamics in a neotropical forest

    Full text link
    We conducted a rigorous test of tropical tree seedling microhabitat differentiation by examining microhabitat associations, survival and growth of established seedlings of ten tropical tree species representing a four-factor gradient in seed size. Eight microhabitat variables describing soil and light conditions were measured directly adjacent to each of 588 seedlings within twelve 10×100 m belt transects at Paracou, French Guiana, and at 264 reference points along the transects. From these measurements, we defined three principal components describing soil richness, soil softness and canopy openness. Six of ten species (in 9 of 30 total cases) were distributed non-randomly with respect to microhabitat along at least one principal component. However, few species demonstrated clear microhabitat specialization. All shifts in distribution relative to reference points were in the same direction (richer, softer soil). Furthermore, of 135 pairwise comparisons among the species, only 7 were significantly different. More than three-fourths of all seedlings (75.3%) survived over the 2-year monitoring period, but survival rates varied widely among species. In no case was the probability of survival influenced by any microhabitat parameter. Relative height growth rates for the seedlings over 2 years varied from −0.031 cm cm −1  year −1 ( Dicorynia guianensis , Caesalpiniaceae) to 0.088 cm cm −1  year −1 ( Virola michelii , Myristicaceae). In only 4 of 30 cases was height growth significantly associated with one of the three principal components. Because the conditions in this study were designed to maximize the chance of finding microhabitat differentiation among a group of species differing greatly in life history traits, the lack of microhabitat specialization it uncovered suggests that microhabitat partitioning among tropical tree species at the established seedling stage is unlikely to contribute greatly to coexistence among these species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47708/1/442_2004_Article_1691.pd

    Opioid Neurobiology, Neurogenetics and Neuropharmacology in Zebrafish

    No full text
    Despite the high prevalence of medicinal use and abuse of opioids, their neurobiology and mechanisms of action are not fully understood. Experimental (animal) models are critical for improving our understanding of opioid effects in vivo. As zebrafish (Danio rerio) are increasingly utilized as a powerful model organism in neuroscience research, mounting evidence suggests these fish as a useful tool to study opioid neurobiology. Here, we discuss the zebrafish opioid system with specific focus on opioid gene expression, existing genetic models, as well as its pharmacological and developmental regulation. As many human brain diseases involve pain and aberrant reward, we also summarize zebrafish models relevant to opioid regulation of pain and addiction, including evidence of functional interplay between the opioid system and central dopaminergic and other neurotransmitter mechanisms. Additionally, we critically evaluate the limitations of zebrafish models for translational opioid research and emphasize their developing utility for improving our understanding of evolutionarily conserved mechanisms of pain-related, addictive, affective and other behaviors, as well as for fostering opioid-related drug discovery. (C) 2019 IBRO. Published by Elsevier Ltd. All rights reserved

    Facile Synthesis of Stable and Highly Luminescent Methylammonium Lead Halide Nanocrystals for Efficient Light Emitting Devices

    No full text
    Metal halide perovskites are promising candidates for use in light emitting diodes (LEDs), due to their potential for color tunable and high luminescence efficiency. While recent advances in perovskite-based light emitting diodes have resulted in external quantum efficiencies exceeding 12.4% for the green emitters, and infrared emitters based on 3D/2D mixed dimensional perovskites have exceeded 20%, the external quantum efficiencies of the red and blue emitters still lag behind. A critical issue to date is creating highly emissive and stable perovskite emitters with the desirable emission band gap to achieve full-color displays and white LEDs. Herein, we report the preparation and characterization of a highly luminescent and stable suspension of cubic-shaped methylammonium lead triiodide (CH3NH3PbI3) perovskite nanocrystals, where we synthesize the nanocrystals via a ligand-assisted reprecipitation technique, using an acetonitrile/methylamine compound solvent system to solvate the ions and toluene as the antisolvent to induce crystallization. Through tuning the ratio of the ligands, the ligand to toluene ratio, and the temperature of the toluene, we obtain a solution of CH3NH3PbI3 nanocrystals with a photoluminescence quantum yield exceeding 93% and tunable emission between 660 and 705 nm. We also achieved red emission at 635 nm by blending the nanocrystals with bromide salt and obtained perovskite-based light emitting diodes with maximum electroluminescent external quantum efficiency of 2.75%

    Developing zebrafish experimental animal models relevant to schizophrenia

    No full text
    Schizophrenia is a severely debilitating, lifelong psychiatric disorder affecting approximately 1% of global population. The pathobiology of schizophrenia remains poorly understood, necessitating further translational research in this field. Experimental (animal) models are becoming indispensable for studying schizophrenia-related phenotypes and pro/antipsychotic drugs. Mounting evidence suggests the zebrafish (Danio rerio) as a useful tool to model various phenotypes relevant to schizophrenia. In addition to their complex robust behaviors, zebrafish possess high genetic and physiological homology to humans, and are also sensitive to drugs known to reduce or promote schizophrenia clinically. Here, we summarize findings on zebrafish application to modeling schizophrenia, as well as discuss recent progress and remaining challenges in this field. We also emphasize the need in further development and wider use of zebrafish models for schizophrenia to better understand its pathogenesis and enhance the search for new effective antipsychotics
    corecore