5 research outputs found

    Where are you hiding, sugar? (Sugar content of popular drink and snacks, with suggestions for healthier alternatives)

    Get PDF
    Two flyers, with associated dotphrases, on the actual sugar content of popular drink and snack foods were created. Also provided is information about the long-term impact of sugar on our bodies over time from local dieticians, and healthier alternative food and drink choices with less sugar content.https://scholarworks.uvm.edu/fmclerk/1793/thumbnail.jp

    Oceanic long-range transport of organic additives present in plastic products: an overview

    Get PDF
    Most plastics are made of persistent synthetic polymer matrices that contain chemical additives in significant amounts. Millions of tonnes of plastics are produced every year and a significant amount of this plastic enters the marine environment, either as macro- or microplastics. In this article, an overview is given of the presence of marine plastic debris globally and its potential to reach remote locations in combination with an analysis of the oceanic long-range transport potential of organic additives present in plastic debris. The information gathered shows that leaching of hydrophobic substances from plastic is slow in the ocean, whereas more polar substances leach faster but mostly from the surface layers of the particle. Their high content used in plastic of several percent by weight allows also these chemicals to be transported over long distances without being completely depleted along the way. It is therefore likely that various types of additives reach remote locations with plastic debris. As a consequence, birds or other wildlife that ingest plastic debris are exposed to these substances, as leaching is accelerated in warm-blooded organisms and in hydrophobic fluids such as stomach oil, compared to leaching in water. Our estimates show that approximately 8 ' 100-18 ' 900 t of various organic additives are transported with buoyant plastic matrices globally with a significant portion also transported to the Arctic. For many of these chemicals, long-range transport (LRT) by plastic as a carrier is their only means of travelling over long distances without degrading, resulting in plastic debris enabling the LRT of chemicals which otherwise would not reach polar environments with unknown consequences. The transport of organic additives via plastic debris is an additional long-range transport route that should also be considered under the Stockholm Convention

    Personal radiofrequency electromagnetic field exposure of adolescents in the Greater London area in the SCAMP cohort and the association with restrictions on permitted use of mobile communication technologies at school and at home

    Get PDF
    Personal measurements of radiofrequency electromagnetic fields (RF-EMF) have been used in several studies to characterise personal exposure in daily life, but such data are limitedly available for adolescents, and not yet for the United Kingdom (UK). In this study, we aimed to characterise personal exposure to RF-EMF in adolescents and to study the association between exposure and rules applied at school and at home to restrict wireless communication use, likely implemented to reduce other effects of mobile technology (e.g. distraction). We measured exposure to RF-EMF for 16 common frequency bands (87.5 MHz–3.5 GHz), using portable measurement devices (ExpoM-RF), in a subsample of adolescents participating in the cohort Study of Cognition, Adolescents and Mobile Phones (SCAMP) from Greater London (UK) (n = 188). School and home rules were assessed by questionnaire and concerned the school's availability of WiFi and mobile phone policy, and parental restrictions on permitted mobile phone use. Adolescents recorded their activities in real time using a diary app on a study smartphone, while characterizing their personal RF-EMF exposure in daily life, during different activities and times of the day. Data analysis was done for 148 adolescents from 29 schools who recorded RF-EMF data for a median duration of 47 h. The majority (74%) of adolescents spent part of their time at school during the measurement period. Median total RF-EMF exposure was 40 μW/m2 at home, 94 μW/m2 at school, and 100 μW/m2 overall. In general, restrictions at school or at home made little difference for adolescents’ measured exposure to RF-EMF, except for uplink exposure from mobile phones while at school, which was found to be significantly lower for adolescents attending schools not permitting phone use at all, compared to adolescents attending schools allowing mobile phone use during breaks. This difference was not statistically significant for total personal exposure. Total exposure to RF-EMF in adolescents living in Greater London tended to be higher compared to exposure levels reported in other European countries. This study suggests that school policies and parental restrictions are not associated with a lower RF-EMF exposure in adolescents
    corecore