11 research outputs found

    Postnatal mechanical loading drives adaptation of tissues primarily through modulation of the non-collagenous matrix

    Get PDF
    Mature connective tissues demonstrate highly specialised properties, remarkably adapted to meet their functional requirements. Tissue adaptation to environmental cues can occur throughout life and poor adaptation commonly results in injury. However, the temporal nature and drivers of functional adaptation remain undefined. Here, we explore functional adaptation and specialisation of mechanically loaded tissues using tendon; a simple aligned biological composite, in which the collagen (fascicle) and surrounding predominantly non-collagenous matrix (interfascicular matrix) can be interrogated independently. Using an equine model of late development, we report the first phase-specific analysis of biomechanical, structural, and compositional changes seen in functional adaptation, demonstrating adaptation occurs postnatally, following mechanical loading, and is almost exclusively localised to the non-collagenous interfascicular matrix. These novel data redefine adaptation in connective tissue, highlighting the fundamental importance of non-collagenous matrix and suggesting that regenerative medicine strategies should change focus from the fibrous to the non-collagenous matrix of tissue

    Postnatal mechanical loading drives adaptation of tissues primarily through modulation of the non-collagenous matrix

    Get PDF
    AbstractMature connective tissues demonstrate highly specialised properties, remarkably adapted to meet their functional requirements. Tissue adaptation to environmental cues can occur throughout life and poor adaptation commonly results in injury. However, the temporal nature and drivers of functional adaptation remain undefined. Here, we explore functional adaptation and specialisation of mechanically loaded tissues using tendon; a simple aligned biological composite, in which the collagen (fibre phase) and surrounding predominantly non-collagenous matrix (matrix phase) can be interrogated independently. Using an equine model of late development, we report the first phase-specific analysis of biomechanical, structural and compositional changes seen in functional adaptation, demonstrating adaptation occurs postnatally, following mechanical loading, and is almost exclusively localised to the non-collagenous matrix phase. These novel data redefine adaptation in connective tissue, highlighting the fundamental importance of non-collagenous matrix and suggesting that regenerative medicine strategies should change focus from the fibrous to the non-collagenous matrix phase of tissue.</jats:p

    Postnatal mechanical loading drives adaptation of tissues primarily through modulation of the non-collagenous matrix.

    Get PDF
    Mature connective tissues demonstrate highly specialised properties, remarkably adapted to meet their functional requirements. Tissue adaptation to environmental cues can occur throughout life and poor adaptation commonly results in injury. However, the temporal nature and drivers of functional adaptation remain undefined. Here, we explore functional adaptation and specialisation of mechanically loaded tissues using tendon; a simple aligned biological composite, in which the collagen (fascicle) and surrounding predominantly non-collagenous matrix (interfascicular matrix) can be interrogated independently. Using an equine model of late development, we report the first phase-specific analysis of biomechanical, structural, and compositional changes seen in functional adaptation, demonstrating adaptation occurs postnatally, following mechanical loading, and is almost exclusively localised to the non-collagenous interfascicular matrix. These novel data redefine adaptation in connective tissue, highlighting the fundamental importance of non-collagenous matrix and suggesting that regenerative medicine strategies should change focus from the fibrous to the non-collagenous matrix of tissue

    Comparison between chaotropic and detergent-based sample preparation workflow in tendon for mass spectrometry analysis

    Get PDF
    Exploring the tendon proteome is a challenging but important task for understanding the mechanisms of physiological/pathological processes during ageing and disease and for the development of new treatments. Several extraction methods have been utilised for tendon mass spectrometry, however different extraction methods have not been simultaneously compared. In the present study we compared protein extraction in tendon with two chaotropic agents, guanidine hydrochloride (GnHCl) and urea, a detergent, RapiGestā„¢, and their combinations for shotgun mass spectrometry. An initial proteomic analysis was performed following urea, GnHCl, and RapiGestā„¢ extraction of equine superficial digital flexor tendon (SDFT) tissue. Subsequently, another proteomic analysis was performed following extraction with GnHCl, Rapigestā„¢, and their combinations. Between the two chaotropic agents, GnHCl extracted more proteins, whilst a greater number of proteins were solely identified after Rapigestā„¢ extraction. Protein extraction with a combination of GnHCl followed by RapiGestā„¢ on the insoluble pellet demonstrated, after labelā€free quantification, increased abundance of identified collagen proteins and low sample to sample variability. In contrast, GnHCl extraction on its own showed increased abundance of identified proteoglycans and cellular proteins. Therefore, the selection of protein extraction method for tendon tissue for mass spectrometry analysis should reflect the focus of the study
    corecore