314 research outputs found

    Adaptive regulation of riboflavin transport in heart: effect of dietary riboflavin deficiency in cardiovascular pathogenesis

    Get PDF
    Deficiency or defective transport of riboflavin (RF) is known to cause neurological disorders, cataract, cardiovascular anomalies, and various cancers by altering the biochemical pathways. Mechanisms and regulation of RF uptake process is well characterized in the cells of intestine, liver, kidney, and brain origin, while very little is known in the heart. Hence, we aimed to understand the expression and regulation of RF transporters (rRFVT-1 and rRFVT-2) in cardiomyocytes during RF deficiency and also investigated the role of RF in ischemic cardiomyopathy and mitochondrial dysfunction in vivo. Riboflavin uptake assay revealed that RF transport in H9C2 is (1) significantly higher at pH 7.5, (2) independent of Na+ and (3) saturable with a Km of 3.746 µM. For in vivo studies, male Wistar rats (110–130 g) were provided riboflavin deficient food containing 0.3 ± 0.05 mg/kg riboflavin for 7 weeks, which resulted in over expression of both RFVTs in mRNA and protein level. RF deprivation resulted in the accumulation of cardiac biomarkers, histopathological abnormalities, and reduced mitochondrial membrane potential which evidenced the key role of RF in the development of cardiovascular pathogenesis. Besides, adaptive regulation of RF transporters upon RF deficiency signifies that RFVTs can be considered as an effective delivery system for drugs against cardiac diseases

    Brown−Vialetto−Van Laere and Fazio−Londe syndromes: SLC52A3 mutations with puzzling phenotypes and inheritance

    Get PDF
    BACKGROUND: Brown-Vialetto-Van Laere Syndrome (BVVLS) and Fazio-Londe Disease (FLD) are rare neurological disorders presenting with pontobulbar palsy, muscle weakness, and respiratory insufficiency. Mutations in SLC52A2 (hRFVT-2) or SLC52A3 (hRFVT-3) genes can be responsible for these disorders with an autosomal recessive pattern of inheritance. The aim of this study is to screen for mutations in SLC52A2 and SLC52A3 among Indian families diagnosed with BVVLS and FLD. METHODS: SLC52A2 and SLC52A3 were screened in one FLD and three BVVLS patients by exon-specific amplification using PCR and sequencing. In silico predictions using bioinformatics tools and confocal imaging using HEK-293 cells were performed to determine the functional impact of identified mutations. RESULTS: Genetic analysis of a mother and son with BVVLS was identified with a novel homozygous mutation c.710C>T (p.Ala237Val) in SLC52A3. This variant was found to have autosomal pseudo-dominant pattern of inheritance, which was neither listed in the Exome variant server or in 1000 genomes database. In silico analysis and confocal imaging of the p.Ala237Val variant showed higher degree of disorderness in hRFVT3 that could affect riboflavin transport. Furthermore, a common homozygous mutation c.62A>G (p.Asn21Ser) was identified in other BVVLS and FLD patients. Despite having different clinical phenotypes, both BVVLS and FLD disorder can be attributed to this mutation. CONCLUSION: A rare and peculiar pattern of autosomal pseudo-dominant inheritance is observed for the first time in two genetically related BVVLS cases with Indian origin and a common mutation c.62A>G (p.Asn21Ser) in SLC52A3 can be responsible for both BVVLS and FLD with variable phenotypes

    3′-UTR SNP rs2229611 in G6PC1 affects mRNA stability, expression and Glycogen Storage Disease type-Ia risk

    Get PDF
    The frequency of rs2229611, previously reported in Chinese, Caucasians, Japanese and Hispanics, was investigated for the first time in Indian ethnicity. We analyzed its role in the progression of Glycogen Storage Disease type-Ia (GSD-Ia) and breast cancer. Genotype data on rs2229611 revealed that the risk of GSD-Ia was higher (P = 0.0195) with CC compared to TT/TC genotypes, whereas no such correlation was observed with breast cancer cases. We observed a strong linkage disequilibrium (LD) among rs2229611 and other disease causing G6PC1 variants (| D′| = 1, r2 = 1). Functional validation performed in HepG2 cells using luciferase constructs showed significant (P < 0.05) decrease in expression than wild-type 3′-UTR due to curtailed mRNA stability. Furthermore, AU-rich elements (AREs) mediated regulation of G6PC1 expression characterized using 3′-UTR deletion constructs showed a prominent decrease in mRNA stability. We then examined whether miRNAs are involved in controlling G6PC1 expression using pmirGLO-UTR constructs, with evidence of more distinct inhibition in the reporter function with rs2229611. These data suggests that rs2229611 is a crucial regulatory SNP which in homozygous state leads to a more aggressive disease phenotype in GSD-Ia patients. The implication of this result is significant in predicting disease onset, progression and response to disease modifying treatments in patients with GSD-Ia

    Bioremediation of Penicillin-Contaminated Poultry Faecal Waste using Betalactamase-Producing Bacteria

    Get PDF
    The widespread use of antibiotics in poultry farming has led to the contamination of the environment with antibiotic residues, posing significant risks to human health and contributing to the development of antibiotic resistance. In this study, we aimed to isolate betalactamase-producing bacteria from poultry faecal waste samples obtained from local poultry processing industries in Namakkal, Tamilnadu, India. The potential isolates were further characterized for betalactamase enzyme activity and their ability to degrade penicillin, a commonly used antibiotic in the poultry industry. Twenty poultry faecal waste samples were collected from regular poultry waste dumping sites. Microorganisms were isolated from these samples using the serial dilution and plating method on nutrient agar media. The isolated bacterial colonies were purified to obtain pure cultures for further analysis. The betalactamase-producing isolates were identified using the iodometric tube method, and four out of ten isolates showed positive results for betalactamase activity. These positive isolates were subjected to enzyme assay, and isolate 10 exhibited the highest enzyme activity with a concentration of 43U/ml, followed by isolate 7 with 30.5U/ml of enzyme. The potential betalactamase-producing isolate 10 was selected for its application in the degradation of penicillin in poultry faecal waste. The faecal waste samples were collected from the antibiotic-contaminated area of a poultry farm. After the addition of separated crude enzyme (5ml of 100U), the faecal sample was incubated for 15 days under specific conditions. HPLC analysis revealed a significant degradation of penicillin in the test sample treated with the betalactamase enzyme, with a degradation percentage of 48.6%. The results of this study indicate that betalactamase-producing bacteria can effectively degrade penicillin in poultry faecal waste. This bioremediation approach presents a potential solution to reduce antibiotic pollution in the environment and mitigate the risk of antibiotic resistance. Further research and application of such enzymatic degradation methods could contribute to sustainable and eco-friendly waste management practices in the poultry industry

    Biodiesel sustainability: The global impact of potential biodiesel production on the energy–water–food (EWF) nexus

    Get PDF
    A data-driven model is used to analyse the global effects of biodiesel on the energy–water–food (EWF) nexus, and to understand the complex environmental correlation. Several criteria to measure the sustainability of biodiesel and four main limiting factors for biodiesel production are discussed in this paper. The limiting factors includes water stress, food stress, feedstock quantity and crude oil price. The 155-country model covers crude oil prices ranging from USD10/bbl to USD160/bbl, biodiesel refinery costs ranging from -USD0.30/L to USD0.30/L and 45 multi-generation biodiesel feedstocks. The model is capable of ascertaining changes arising from biodiesel adoption in terms of light-duty diesel engine emissions (NO, CO, UHC and smoke opacity), water stress index (WSI), dietary energy supply (DES), Herfindahl–Hirschman index (HHI) and short-term energy security. With the addition of potential biodiesel production, the renewable energy sector of global primary energy profile can increase by 0.43%, with maximum increment up to 10.97% for Malaysia. At current crude oil price of USD75/bbl and refinery cost of USD0.1/L, only Benin, Ireland and Togo can produce biodiesel profitably. The model also shows that water requirement varies non-linearly with multi-feedstock biodiesel production as blending ratio increases. Out of the 155 countries, biodiesel production is limited by feedstock quantity for 82 countries, 47 are limited by crude oil price, 20 by water stress and 6 by food stress. The results provide insights for governments to set up environmental policy guidelines, in implementing biodiesel technology as a cleaner alternative to diesel

    Novel ALDH3A2 mutations in structural and functional domains of FALDH causing diverse clinical phenotypes in Sjögren-Larsson Syndrome patients

    Get PDF
    Mutations in ALDH3A2 cause Sjögren-Larsson Syndrome (SLS), a neuro-ichthyotic condition that is caused by deficiency of fatty aldehyde dehydrogenase (FALDH). We screened for novel mutations causing SLS among Indian ethnicity, characterized the identified mutations in silico and in vitro; and retrospectively evaluated their role in phenotypic heterogeneity. Interestingly, asymmetric distribution of non-classical traits was observed in our cases. Nerve conduction studies suggested intrinsic-minus-claw hands in two siblings, a novel neurological phenotype to SLS. Genetic testing revealed 5 novel homozygous ALDH3A2 mutations in six cases: Case-1-NM_000382.2:c.50C>A, NP_000373.1:p.(Ser17Ter); Case-2-NM_000382.2:c.199G>T, NP_000373.1:p.(Glu67Ter); Case-3-NM_000382.2:c.1208G>A, NP_000373.1:p.(Gly403Asp); Case-4-NM_000382.2:c.1325C>T, NP_000373.1:p.(Pro442Leu); Case-5&6-NM_000382.2:c.1349G>A, NP_000373.1:p.(Trp450Ter). The mutations identified were predicted to be pathogenic and disrupts the functional domains of the FALDH. p.(Pro442Leu) at the C-terminal α-helix, might impair substrate gating process. Mammalian expression studies with exon-9 mutants confirmed the profound reduction in the enzyme activity. Diminished aldehyde oxidizing activity was observed with cases-2&3. Cases-2 & 3 showed epidermal hyperplasia with mild intracellular edema, spongiosis, hypergranulosis, and perivascular-interstitial lymphocytic infiltrate and a leaky eosinophilic epidermis. The presence of keratin-milia like lipid vacuoles implies defective lamellar secretion with p.(Gly403Asp). This study improves our understanding of the clinical and mutational diversity in SLS, which might help to fast-track diagnostic and therapeutic interventions of this debilitating disorder. This article is protected by copyright. All rights reserved

    Glucose-induced down regulation of thiamine transporters in the kidney proximal tubular epithelium produces thiamine insufficiency in diabetes

    Get PDF
    Increased renal clearance of thiamine (vitamin B1) occurs in experimental and clinical diabetes producing thiamine insufficiency mediated by impaired tubular re-uptake and linked to the development of diabetic nephropathy. We studied the mechanism of impaired renal re-uptake of thiamine in diabetes. Expression of thiamine transporter proteins THTR-1 and THTR-2 in normal human kidney sections examined by immunohistochemistry showed intense polarised staining of the apical, luminal membranes in proximal tubules for THTR-1 and THTR-2 of the cortex and uniform, diffuse staining throughout cells of the collecting duct for THTR-1 and THTR-2 of the medulla. Human primary proximal tubule epithelial cells were incubated with low and high glucose concentration, 5 and 26 mmol/l, respectively. In high glucose concentration there was decreased expression of THTR-1 and THTR-2 (transporter mRNA: −76% and −53% respectively, p<0.001; transporter protein −77% and −83% respectively, p<0.05), concomitant with decreased expression of transcription factor specificity protein-1. High glucose concentration also produced a 37% decrease in apical to basolateral transport of thiamine transport across cell monolayers. Intensification of glycemic control corrected increased fractional excretion of thiamine in experimental diabetes. We conclude that glucose-induced decreased expression of thiamine transporters in the tubular epithelium may mediate renal mishandling of thiamine in diabetes. This is a novel mechanism of thiamine insufficiency linked to diabetic nephropathy

    A new international research in sonochemistry of dairy product

    Get PDF
    The paper describes the results of recent research in the field of sonochemistry of the dairy products which was conducted from Australia, Russia, Belarus and Estonia. This work is related to the technology of preparation of composite formula milk from natural milk, vegetable oils and dry milk products with cavitation treatment of water used. She is devoted to obtaining a homogeneous mixtures of dairy semiproducts, from which subsequently produce dairy products such as cottage cheese or cheese, where most of the water is removed with sera. It is shown that sonochemical water treatment has a positive effect on the entire process and its outcome

    A loss-of-function homozygous mutation in DDX59 implicates a conserved DEAD-box RNA helicase in nervous system development and function.

    Get PDF
    We report on a homozygous frameshift deletion in DDX59 (c.185del: p.Phe62fs*13) in a family presenting with orofaciodigital syndrome phenotype associated with a broad neurological involvement characterized by microcephaly, intellectual disability, epilepsy, and white matter signal abnormalities associated with cortical and subcortical ischemic events. DDX59 encodes a DEAD-box RNA helicase and its role in brain function and neurological diseases is unclear. We showed a reduction of mutant cDNA and perturbation of SHH signaling from patient-derived cell lines; furthermore, analysis of human brain gene expression provides evidence that DDX59 is enriched in oligodendrocytes and might act within pathways of leukoencephalopathies-associated genes. We also characterized the neuronal phenotype of the Drosophila model using mutant mahe, the homolog of human DDX59, and showed that mahe loss-of-function mutant embryos exhibit impaired development of peripheral and central nervous system. Taken together, our results support a conserved role of this DEAD-box RNA helicase in neurological function
    corecore