157 research outputs found

    Monitoring Influenza Activity in the United States: A Comparison of Traditional Surveillance Systems with Google Flu Trends

    Get PDF
    Google Flu Trends was developed to estimate US influenza-like illness (ILI) rates from internet searches; however ILI does not necessarily correlate with actual influenza virus infections.Influenza activity data from 2003-04 through 2007-08 were obtained from three US surveillance systems: Google Flu Trends, CDC Outpatient ILI Surveillance Network (CDC ILI Surveillance), and US Influenza Virologic Surveillance System (CDC Virus Surveillance). Pearson's correlation coefficients with 95% confidence intervals (95% CI) were calculated to compare surveillance data. An analysis was performed to investigate outlier observations and determine the extent to which they affected the correlations between surveillance data. Pearson's correlation coefficient describing Google Flu Trends and CDC Virus Surveillance over the study period was 0.72 (95% CI: 0.64, 0.79). The correlation between CDC ILI Surveillance and CDC Virus Surveillance over the same period was 0.85 (95% CI: 0.81, 0.89). Most of the outlier observations in both comparisons were from the 2003-04 influenza season. Exclusion of the outlier observations did not substantially improve the correlation between Google Flu Trends and CDC Virus Surveillance (0.82; 95% CI: 0.76, 0.87) or CDC ILI Surveillance and CDC Virus Surveillance (0.86; 95%CI: 0.82, 0.90).This analysis demonstrates that while Google Flu Trends is highly correlated with rates of ILI, it has a lower correlation with surveillance for laboratory-confirmed influenza. Most of the outlier observations occurred during the 2003-04 influenza season that was characterized by early and intense influenza activity, which potentially altered health care seeking behavior, physician testing practices, and internet search behavior

    Interaction of C-Terminal Truncated Human αA-Crystallins with Target Proteins

    Get PDF
    Significant portion of alphaA-crystallin in human lenses exists as C-terminal residues cleaved at residues 172, 168, and 162. Chaperone activity, determined with alcohol dehydrogenase (ADH) and betaL-crystallin as target proteins, was increased in alphaA(1-172) and decreased in alphaA(1-168) and alphaA(1-162). The purpose of this study was to show whether the absence of the C-terminal residues influences protein-protein interactions with target proteins.Our hypothesis is that the chaperone-target protein binding kinetics, otherwise termed subunit exchange rates, are expected to reflect the changes in chaperone activity. To study this, we have relied on fluorescence resonance energy transfer (FRET) utilizing amine specific and cysteine specific fluorescent probes. The subunit exchange rate (k) for ADH and alphaA(1-172) was nearly the same as that of ADH and alphaA-wt, alphaA(1-168) had lower and alphaA(1-162) had the lowest k values. When betaL-crystallin was used as the target protein, alphaA(1-172) had slightly higher k value than alphaA-wt and alphaA(1-168) and alphaA(1-162) had lower k values. As expected from earlier studies, the chaperone activity of alphaA(1-172) was slightly better than that of alphaA-wt, the chaperone activity of alphaA(1-168) was similar to that of alphaA-wt and alphaA(1-162) had substantially decreased chaperone activity.Cleavage of eleven C-terminal residues including Arg-163 and the C-terminal flexible arm significantly affects the interaction with target proteins. The predominantly hydrophilic flexible arm appears to be needed to keep the chaperone-target protein complex soluble

    The γ-ray binary LS 5039: mass and orbit constraints from MOST observations

    Get PDF
    The results of a coordinated space-based photometric and ground-based spectroscopic observing campaign on the enigmatic γ-ray binary LS 5039 are reported. 16 d of observations from the MOST satellite have been combined with high-resolution optical echelle spectroscopy from the 2.3-m ANU Telescope in Siding Spring, Australia. These observat ions were used to measure the orbital parameters of the binary and to study the properties of stellar wind from the O primary. We found that any broad-band optical photometric variability at the orbital period is below the 2 mmag level, supporting the scenario that the orbital eccentricity of the system is near the 0.24 ± 0.08 value implied by our spectroscopy, which is lower than values previously obtained by other workers. The low amplitude optical variability also implies the component masses are at the higher end of estimates based on the primary's O6.5V((f)) spectral type with a primary mass of ∼26 M⊙ and a mass for the compact star of at least 1.8 M⊙. The mass-loss rate from the O primary was determined to be 3.7 to 4.8 × 10−7 M⊙ yr−1

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Direct Regulation of Striated Muscle Myosins by Nitric Oxide and Endogenous Nitrosothiols

    Get PDF
    , both through activation of guanylyl cyclase and through modification of cysteines in proteins to yield S-nitrosothiols. While NO affects the contractile apparatus directly, the identities of the target myofibrillar proteins remain unknown. Here we report that nitrogen oxides directly regulate striated muscle myosins..These data show that nitrosylation signaling acts as a molecular “gear shift” for myosin—an altogether novel mechanism by which striated muscle and cellular biomechanics may be regulated

    Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1

    Get PDF
    Our previous studies have shown that microRNA-383 (miR-383) expression is downregulated in the testes of infertile men with maturation arrest (MA). However, the underlying mechanisms of miR-383 involved in the pathogenesis of MA remain unknown. In this study, we showed that downregulation of miR-383 was associated with hyperactive proliferation of germ cells in patients with mixed patterns of MA. Overexpression of miR-383 in NT2 (testicular embryonal carcinoma) cells resulted in suppression of proliferation, G1-phase arrest and induction of apoptosis, whereas silencing of miR-383 reversed these effects. The effects of miR-383 were mediated through targeting a tumor suppressor, interferon regulatory factor-1 (IRF1), and miR-383 was negatively correlated with IRF1 protein expression in vivo. miR-383 inhibited IRF1 by affecting its mRNA stability, which subsequently reduced the levels of the targets of IRF1, namely cyclin D1, CDK2 and p21. Downregulation of IRF1 or cyclin D1, but not that of CDK2, enhanced miR-383-mediated effects, whereas silencing of p21 partially inhibited the effects of miR-383. Moreover, miR-383 downregulated CDK4 by increasing proteasome-dependent degradation of CDK4, which in turn resulted in an inhibition of phosphorylated retinoblastoma protein (pRb) phosphorylation. These results suggest that miR-383 functions as a negative regulator of proliferation by targeting IRF1, in part, through inactivation of the pRb pathway. Abnormal testicular miR-383 expression may potentiate the connections between male infertility and testicular germ cell tumor

    Introduced Mammalian Predators Induce Behavioural Changes in Parental Care in an Endemic New Zealand Bird

    Get PDF
    The introduction of predatory mammals to oceanic islands has led to the extinction of many endemic birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthornis melanura). We examined parental behaviour of bellbirds at three woodland sites in New Zealand that differed in predation risk: 1) a mainland site with exotic predators present (high predation risk), 2) a mainland site with exotic predators experimentally removed (low risk recently) and, 3) an off-shore island where exotic predators were never introduced (low risk always). We also compared parental behaviour of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp.) that evolved with native nest predators (high risk always). Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrate that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible

    Genetic variants in RBFOX3 are associated with sleep latency

    Get PDF
    Time to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep latency. We performed a meta-analysis of genome-wide association studies (GWAS) including 2 572 737 single nucleotide polymorphisms (SNPs) established in seven European cohorts including 4242 individuals. We found a cluster of three highly correlated variants (rs9900428, rs9907432 and rs7211029) in the RNA-binding protein fox-1 homolog 3 gene (RBFOX3) associated with sleep latency (P-values=5.77 × 10-08, 6.59 × 10- 08 and 9.17 × 10- 08). These SNPs were replicated in up to 12 independent populations including 30 377 individuals (P-values=1.5 × 10- 02, 7.0 × 10- 03 and 2.5 × 10- 03; combined meta-analysis P-values=5.5 × 10-07, 5.4 × 10-07 and 1.0 × 10-07). A functional prediction of RBFOX3 based on co-expression with other genes shows that this gene is predominantly expressed in brain (P-value=1.4 × 10-316) and the central nervous system (P-value=7.5 × 10- 321). The predicted function of RBFOX3 based on co-expression analysis with other genes shows that this gene is significantly involved in the release cycle of neurotransmitte

    Alloplastische Implantate in der Kopf- und Halschirurgie.

    Get PDF
    corecore