1,912 research outputs found

    Sensitivity of Prescribing High-Intensity, Interval Training Using the Critical Power Concept

    Get PDF
    International Journal of Exercise Science 8(3): 202-212, 2015. The critical power (CP) concept enables the calculation of time to exhaustion (tLIM) for a given power output above CP using the equation of tLIM = W’/(power – CP), where W’ is the curvature constant, and CP is the asymptote for the power-tLIM relationship. The CP concept offers great promise for prescribing high-intensity interval training (HIIT); however, knowledge on the concept’s sensitivity is lacking (i.e., how much of a difference in W’ expenditure is needed to evoke different metabolic responses). We tested if two different power-tLIM configurations expending identical proportions of W’ would evoke different end-exercise oxygen uptake (VO2) and heart rate (HR) values. Five men and five women completed a graded exercise test, 3-min all-out exercise tests, and intervals prescribed to deplete either 70 or 80% of W’ on separate visits. Consistency statistics of intraclass correlation (ICC a), standard error of measure (SEM), and coefficient of variation (CV) were calculated on end-exercise values. End-exercise VO2 were similar for the 3.5- and 5-min bouts, depleting 70% of W’ (ICC a = 0.91, SEM = 3.23 mL·kg-1·min-1, CV = 8.1%) and similar for the 4- and 5-min bouts, depleting 80% of W’ (ICC a = 0.95, SEM = 2.34 mL·kg-1·min-1, CV = 8.1%). No VO2 differences were observed between trials or conditions (p = 0.58). Similarly, HR values (~181 b·min-1) did not differ between trials or conditions (p = 0.45). Use of the CP concept for HIIT prescriptions of different power-tLIM configurations evokes similar end-exercise VO2 values on a given day. Our findings indicate that \u3e10% W’ depletion is necessary to evoke different metabolic responses to HIIT

    Effect of Temperature on Plant Resistance to Arthropod Pests

    Get PDF
    Temperature has a strong influence on the development, survival, and fecundity of herbivorous arthropods, and it plays a key role in regulating the growth and development of their host plants. In addition, temperature affects the production of plant secondary chemicals as well as structural characteristics used for defense against herbivores. Thus, temperature has potentially important implications for host plant resistance. Because temperature directly impacts arthropod pests, both positively and negatively, distinguishing direct effects from indirect effects mediated through host plants poses a challenge for researchers and practitioners. A more comprehensive understanding of how temperature affects plant resistance specifically, and arthropod pests in general, would lead to better predictions of pest populations, and more effective use of plant resistance as a management tactic. Therefore, the goals of this paper are to 1) review and update knowledge about temperature effects on plant resistance, 2) evaluate alternative experimental approaches for separating direct from plant-mediated indirect effects of temperature on pests, including benefits and limitations of each approach, and 3) offer recommendations for future research

    Serum p53 antibodies: predictors of survival in small-cell lung cancer?

    Get PDF
    Serum p53 antibodies have been shown to be a poor prognostic marker in resected non-small-cell lung cancer (NSCLC), but studies in small-cell lung cancer (SCLC) have been contradictory. We have studied the incidence of p53 antibodies in a large SCLC cohort treated at one oncology centre and correlated the results with survival. 231 patients (63% male, median age 65), diagnosed and treated for SCLC between 1987 and 1994 at The Royal Marsden Hospital NHS Trust, had sera stored pretreatment. All samples were tested for p53 antibodies (p53-Ab) using a standardized ELISA technique with a selection of strongly ELISA positive, weakly ELISA positive and negative samples being confirmed with immunoprecipitation. 54 patients were positive for p53-Ab (23%). The presence of a high titre of p53-Ab (titre ratio >5) appears to be associated with a survival advantage with a relative risk of death of 1.71 (95% CI: 1.14–2.58) in those without the antibody (P = 0.02). This study, the largest homogenous group so far looking at p53-Ab in SCLC, suggests that p53 antibody detection may have a role in predicting outcome in this type of cancer. © 2000 Cancer Research Campaign http://www.bjcancer.co

    Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbon nanotubes (CNT) and carbon nanofibers (CNF) are allotropes of carbon featuring fibrous morphology. The dimensions and high aspect ratio of CNT and CNF have prompted the comparison with naturally occurring asbestos fibers which are known to be extremely pathogenic. While the toxicity and hazardous outcomes elicited by airborne exposure to single-walled CNT or asbestos have been widely reported, very limited data are currently available describing adverse effects of respirable CNF.</p> <p>Results</p> <p>Here, we assessed pulmonary inflammation, fibrosis, oxidative stress markers and systemic immune responses to respirable CNF in comparison to single-walled CNT (SWCNT) and asbestos. Pulmonary inflammatory and fibrogenic responses to CNF, SWCNT and asbestos varied depending upon the agglomeration state of the particles/fibers. Foci of granulomatous lesions and collagen deposition were associated with dense particle-like SWCNT agglomerates, while no granuloma formation was found following exposure to fiber-like CNF or asbestos. The average thickness of the alveolar connective tissue - a marker of interstitial fibrosis - was increased 28 days post SWCNT, CNF or asbestos exposure. Exposure to SWCNT, CNF or asbestos resulted in oxidative stress evidenced by accumulations of 4-HNE and carbonylated proteins in the lung tissues. Additionally, local inflammatory and fibrogenic responses were accompanied by modified systemic immunity, as documented by decreased proliferation of splenic T cells <it>ex vivo </it>on day 28 post exposure. The accuracies of assessments of effective surface area for asbestos, SWCNT and CNF (based on geometrical analysis of their agglomeration) versus estimates of mass dose and number of particles were compared as predictors of toxicological outcomes.</p> <p>Conclusions</p> <p>We provide evidence that effective surface area along with mass dose rather than specific surface area or particle number are significantly correlated with toxicological responses to carbonaceous fibrous nanoparticles. Therefore, they could be useful dose metrics for risk assessment and management.</p

    Optimising mechanical separation of anaerobic digestate for total solids and nutrient removal

    Get PDF
    Publication history: Accepted - 16 June 2023; Published - 28 June 2023.Mechanical separation of anaerobic digestate has been identified as a method to reduce pollution risk to waterways by partitioning phosphorus in the solid fraction and reducing its application to land. Separators have adjustable parameters which affect separation efficiency, and hence the degree of phosphorous partitioning, but information on how these parameters affect separation performance is limited in the literature. Two well known technologies were investigated, decanter centrifuge and screw press, to determine the most efficient method of separation. Counterweight load and the use of an oscillator were adjusted for the screw press, while bowl speed, auger differential speed, feed rate and polymer addition were modified for the decanter centrifuge. Separation efficiency was determined for total solids, phosphorus, nitrogen, potassium, and carbon, and the total solids content of resulting fractions was measured. The decanter centrifuge had higher separation efficiency for phosphorus in all cases, ranging from 51% to 71.5%, while the screw press had a phosphorus separation efficiency ranging from 8.5% to 10.9% for digestate of ~5% solids (slurry/grass silage mix). Separation by decanter centrifuge partitioned up to 56% of nitrogen in the solid fraction leaving a reduced nitrogen content in the liquid fraction available for land spreading; this nitrogen would most likely need to be replaced by chemical fertiliser which would add to the cost of the system. The decanter centrifuge is better suited to cases where phosphorus recovery is the most important factor, while the screw press could be advantageous in cases where cost is a limiting factor.This project was supported by The Bryden Centre. The Bryden Centre project is supported by the European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB). The views and opinions expressed in this paper do not necessarily reflect those of the European Commission or the Special EU Programmes Body (SEUPB). The work was also supported by Queen’s University Belfast and the Agri-Food and Biosciences Institute in Northern Ireland

    An economic analysis of anaerobic digestate fuel pellet production: can digestate fuel pellets add value to existing operations?

    Get PDF
    Publication history: Accepted - 9 April 2021; Published online - 16 April 2021.Anaerobic digestion provides renewable energy through waste valorisation, but the digestate by-product is underutilised and presents a risk to water quality. Mechanical separation partitions phosphorous into the solid fraction and further processing into a fuel pellet can provide an additional source of energy and revenue. Previous economic analyses looked only at aspects of the system (e.g. operational costs solely) and the system requires further investigation to determine viability. In this paper, an economic assessment of digestate fuel pellet production at farm-scale anaerobic digestion plants was carried out. The significance of this work is to provide a comprehensive assessment of the energy, phosphorous, and economic balances involved in digestate fuel pellet production at existing anaerobic digestion plants. The aim of this paper is to determine the financial viability of digestate fuel pellet production with objectives to compare two mechanical separation technologies: screw press, and decanting centrifuge. Economies of scale hold true for digestate pellet production and the available digestate in typical UK farm-based anaerobic digestion plants ( 500 kWe) is insufficient for profitability, with pellet production costing from £176/t (decanting centrifuge) to £215/t (screw press), compared to a typical wood pellet sale price of £185/t. Increasing digestate quantity by collaboration of plant operators can reduce the cost of pellet production to between £95/t and £121/t, improving financial viability and increasing the profit per head of cattle by 9–20% on a typical dairy farm utilising anaerobic digestion. The system has potential to aid rural development while also protecting the environment and contributing to the diversification of energy supply.This project was supported by The Bryden Centre. The Bryden Centre project is supported by the European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB). The views and opinions expressed in this paper do not necessarily reflect those of the European Commission or the Special EU Programmes Body (SEUPB). The work was also supported by Queen’s University Belfast and the Agri-Food and Biosciences Institute in Northern Ireland

    Blocking AMPK β1 myristoylation enhances AMPK activity and protects mice from high-fat diet-induced obesity and hepatic steatosis

    Get PDF
    AMP-activated protein kinase (AMPK) is a master regulator of cellular energy homeostasis and a therapeutic target for metabolic diseases. Co/post-translational N-myristoylation of glycine-2 (Gly2) of the AMPK β subunit has been suggested to regulate the distribution of the kinase between the cytosol and membranes through a “myristoyl switch” mechanism. However, the relevance of AMPK myristoylation for metabolic signaling in cells and in vivo is unclear. Here, we generated knockin mice with a Gly2-to-alanine point mutation of AMPKβ1 (β1-G2A). We demonstrate that non-myristoylated AMPKβ1 has reduced stability but is associated with increased kinase activity and phosphorylation of the Thr172 activation site in the AMPK α subunit. Using proximity ligation assays, we show that loss of β1 myristoylation impedes colocalization of the phosphatase PPM1A/B with AMPK in cells. Mice carrying the β1-G2A mutation have improved metabolic health with reduced adiposity, hepatic lipid accumulation, and insulin resistance under conditions of high-fat diet-induced obesity
    corecore