108 research outputs found

    Privacy and Truthful Equilibrium Selection for Aggregative Games

    Full text link
    We study a very general class of games --- multi-dimensional aggregative games --- which in particular generalize both anonymous games and weighted congestion games. For any such game that is also large, we solve the equilibrium selection problem in a strong sense. In particular, we give an efficient weak mediator: a mechanism which has only the power to listen to reported types and provide non-binding suggested actions, such that (a) it is an asymptotic Nash equilibrium for every player to truthfully report their type to the mediator, and then follow its suggested action; and (b) that when players do so, they end up coordinating on a particular asymptotic pure strategy Nash equilibrium of the induced complete information game. In fact, truthful reporting is an ex-post Nash equilibrium of the mediated game, so our solution applies even in settings of incomplete information, and even when player types are arbitrary or worst-case (i.e. not drawn from a common prior). We achieve this by giving an efficient differentially private algorithm for computing a Nash equilibrium in such games. The rates of convergence to equilibrium in all of our results are inverse polynomial in the number of players nn. We also apply our main results to a multi-dimensional market game. Our results can be viewed as giving, for a rich class of games, a more robust version of the Revelation Principle, in that we work with weaker informational assumptions (no common prior), yet provide a stronger solution concept (ex-post Nash versus Bayes Nash equilibrium). In comparison to previous work, our main conceptual contribution is showing that weak mediators are a game theoretic object that exist in a wide variety of games -- previously, they were only known to exist in traffic routing games

    Paired and altruistic kidney donation in the UK: algorithms and experimentation

    Get PDF
    We study the computational problem of identifying optimal sets of kidney exchanges in the UK. We show how to expand an integer programming-based formulation [1, 19] in order to model the criteria that constitute the UK definition of optimality. The software arising from this work has been used by the National Health Service Blood and Transplant to find optimal sets of kidney exchanges for their National Living Donor Kidney Sharing Schemes since July 2008.We report on the characteristics of the solutions that have been obtained in matching runs of the scheme since this time. We then present empirical results arising from the real datasets that stem from these matching runs, with the aim of establishing the extent to which the particular optimality criteria that are present in the UK influence the structure of the solutions that are ultimately computed. A key observation is that allowing 4-way exchanges would be likely to lead to a significant number of additional transplants

    On Linear Congestion Games with Altruistic Social Context

    Full text link
    We study the issues of existence and inefficiency of pure Nash equilibria in linear congestion games with altruistic social context, in the spirit of the model recently proposed by de Keijzer {\em et al.} \cite{DSAB13}. In such a framework, given a real matrix Γ=(γij)\Gamma=(\gamma_{ij}) specifying a particular social context, each player ii aims at optimizing a linear combination of the payoffs of all the players in the game, where, for each player jj, the multiplicative coefficient is given by the value γij\gamma_{ij}. We give a broad characterization of the social contexts for which pure Nash equilibria are always guaranteed to exist and provide tight or almost tight bounds on their prices of anarchy and stability. In some of the considered cases, our achievements either improve or extend results previously known in the literature

    Verifiably Truthful Mechanisms

    Full text link
    It is typically expected that if a mechanism is truthful, then the agents would, indeed, truthfully report their private information. But why would an agent believe that the mechanism is truthful? We wish to design truthful mechanisms, whose truthfulness can be verified efficiently (in the computational sense). Our approach involves three steps: (i) specifying the structure of mechanisms, (ii) constructing a verification algorithm, and (iii) measuring the quality of verifiably truthful mechanisms. We demonstrate this approach using a case study: approximate mechanism design without money for facility location

    Bribeproof mechanisms for two-values domains

    Full text link
    Schummer (Journal of Economic Theory 2000) introduced the concept of bribeproof mechanism which, in a context where monetary transfer between agents is possible, requires that manipulations through bribes are ruled out. Unfortunately, in many domains, the only bribeproof mechanisms are the trivial ones which return a fixed outcome. This work presents one of the few constructions of non-trivial bribeproof mechanisms for these quasi-linear environments. Though the suggested construction applies to rather restricted domains, the results obtained are tight: For several natural problems, the method yields the only possible bribeproof mechanism and no such mechanism is possible on more general domains.Comment: Extended abstract accepted to SAGT 2016. This ArXiv version corrects typos in the proofs of Theorem 7 and Claims 28-29 of prior ArXiv versio

    Manipulation Strategies for the Rank Maximal Matching Problem

    Full text link
    We consider manipulation strategies for the rank-maximal matching problem. In the rank-maximal matching problem we are given a bipartite graph G=(AP,E)G = (A \cup P, E) such that AA denotes a set of applicants and PP a set of posts. Each applicant aAa \in A has a preference list over the set of his neighbours in GG, possibly involving ties. Preference lists are represented by ranks on the edges - an edge (a,p)(a,p) has rank ii, denoted as rank(a,p)=irank(a,p)=i, if post pp belongs to one of aa's ii-th choices. A rank-maximal matching is one in which the maximum number of applicants is matched to their rank one posts and subject to this condition, the maximum number of applicants is matched to their rank two posts, and so on. A rank-maximal matching can be computed in O(min(cn,n)m)O(\min(c \sqrt{n},n) m) time, where nn denotes the number of applicants, mm the number of edges and cc the maximum rank of an edge in an optimal solution. A central authority matches applicants to posts. It does so using one of the rank-maximal matchings. Since there may be more than one rank- maximal matching of GG, we assume that the central authority chooses any one of them randomly. Let a1a_1 be a manipulative applicant, who knows the preference lists of all the other applicants and wants to falsify his preference list so that he has a chance of getting better posts than if he were truthful. In the first problem addressed in this paper the manipulative applicant a1a_1 wants to ensure that he is never matched to any post worse than the most preferred among those of rank greater than one and obtainable when he is truthful. In the second problem the manipulator wants to construct such a preference list that the worst post he can become matched to by the central authority is best possible or in other words, a1a_1 wants to minimize the maximal rank of a post he can become matched to

    The Pareto Frontier of Inefficiency in Mechanism Design

    Get PDF
    We study the trade-off between the Price of Anarchy (PoA) and the Price of Stability (PoS) in mechanism design, in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to the above metrics, and observe that two fundamental mechanisms, namely the First-Price (FP) and the Second-Price (SP), lie on the two opposite extrema of this boundary. Furthermore, for the natural class of anonymous task-independent mechanisms, we completely characterize the PoA/PoS Pareto frontier; we design a class of optimal mechanisms (formula presented) that lie exactly on this frontier. In particular, these mechanisms range smoothly, with respect to parameter (formula presented) across the frontier, between the First-Price (formula presented) and Second-Price (formula presented) mechanisms. En route to these results, we also provide a definitive answer to an important question related to the scheduling problem, namely whether non-truthful mechanisms can provide better makespan guarantees in the equilibrium, compared to truthful ones. We answer this question in the negative, by proving that the Price of Anarchy of all scheduling mechanisms is at least n, where n is the number of machines

    The anarchy of scheduling without money

    Get PDF
    We consider the scheduling problem on n strategic unrelated machines when no payments are allowed, under the objective of minimizing the makespan. We adopt the model introduced in [Koutsoupias 2014] where a machine is bound by her declarations in the sense that if she is assigned a particular job then she will have to execute it for an amount of time at least equal to the one she reported, even if her private, true processing capabilities are actually faster. We provide a (non-truthful) randomized algorithm whose pure Price of Anarchy is arbitrarily close to 1 for the case of a single task and close to n if it is applied independently to schedule many tasks, which is asymptotically optimal for the natural class of anonymous, task-independent algorithms. Previous work considers the constraint of truthfulness and proves a tight approximation ratio of (n+1)/2 for one task which generalizes to n(n+1)/2 for many tasks. Furthermore, we revisit the truthfulness case and reduce the latter approximation ratio for many tasks down to n, asymptotically matching the best known lower bound. This is done via a detour to the relaxed, fractional version of the problem, for which we are also able to provide an optimal approximation ratio of 1. Finally, we mention that all our algorithms achieve optimal ratios of 1 for the social welfare objective
    corecore