
The Anarchy of Scheduling Without Money∗

Yiannis Giannakopoulos† Elias Koutsoupias‡ Maria Kyropoulou§

December 4, 2018

Abstract
We consider the scheduling problem on n strategic unrelated machines when no pay-

ments are allowed, under the objective of minimizing the makespan. We adopt the model
introduced in [Koutsoupias 2014] where a machine is bound by her declarations in the sense
that if she is assigned a particular job then she will have to execute it for an amount of
time at least equal to the one she reported, even if her private, true processing capabilities
are actually faster. We provide a (non-truthful) randomized algorithm whose pure Price
of Anarchy is arbitrarily close to 1 for the case of a single task and close to n if it is ap-
plied independently to schedule many tasks, which is asymptotically optimal for the natural
class of anonymous, task-independent algorithms. Previous work considers the constraint
of truthfulness and proves a tight approximation ratio of (n+ 1)/2 for one task which gen-
eralizes to n(n + 1)/2 for many tasks. Furthermore, we revisit the truthfulness case and
reduce the latter approximation ratio for many tasks down to n, asymptotically matching
the best known lower bound. This is done via a detour to the relaxed, fractional version
of the problem, for which we are also able to provide an optimal approximation ratio of 1.
Finally, we mention that all our algorithms achieve optimal ratios of 1 for the social welfare
objective.

1 Introduction
We consider a variant of the scheduling problem proposed by Koutsoupias [18] where no pay-
ments are allowed and the machines are bound by their declarations. In particular, the goal
is to allocate a set of tasks to strategic unrelated machines while minimizing the makespan.
The time/cost needed by a machine to execute a task is private information of the machine.
Each machine is rational and selfish, and will misreport her costs in an attempt to minimize
her own overall running time, under the assumption that if she is allocated a task, she will
execute it for at least the declared cost (more specifically, for the maximum among her true
and reported execution times). We are interested in designing allocation protocols that do not
use payments and the stable outcomes are not far from the non-strategic, centrally enforced
optimum makespan.

The field of Mechanism Design [27] focuses on the implementation of desired outcomes.
Given the strategic behaviour of the players who provide the input and a specific objective
∗Supported by ERC Advanced Grant 321171 (ALGAME), EPSRC grant EP/M008118/1 and the Alexander

von Humboldt Foundation with funds from the German Federal Ministry of Education and Research (BMBF).
A preliminary version of this paper, not including all results, appeared in SAGT’16 [14].
A significant part of this work was carried out while Yiannis Giannakopoulos was at the University of Liverpool
and Maria Kyropoulou was at the University of Oxford.
†Department of Mathematics, TU Munich. Email: yiannis.giannakopoulos@tum.de
‡Department of Computer Science, University of Oxford. Email: elias@cs.ox.ac.uk
§School of Computer Science and Electronic Engineering, University of Essex. Email: maria.kyropoulou@

essex.ac.uk

1

ar
X

iv
:1

60
7.

03
68

8v
3

 [
cs

.G
T

]
 4

 D
ec

 2
01

8

mailto:yiannis.giannakopoulos@tum.de
mailto:elias@cs.ox.ac.uk
mailto:maria.kyropoulou@essex.ac.uk
mailto:maria.kyropoulou@essex.ac.uk

function that measures the quality of the outcome, the challenge is to design mechanisms which
are able to elicit a desired behaviour from the players, while at the same time optimizing that
objective value. A primary designer goal that has been extensively studied is that of truthfulness,
under the central solution concept of dominant strategies: a player should be able to optimize
her own individual utility by reporting truthfully, no matter what strategies the other players
follow. However, achieving this is not always compatible with maintaining a good objective value
[15, 31]. The introduction of payments was suggested as a means towards achieving these goals,
since a carefully designed payment scheme incentivizes the players to make truthful declarations.
The goal now becomes to design such algorithms (termed mechanisms) which utilize monetary
compensations in order to impose truthful behaviour while optimizing the objective function.
A prominent positive result exists for utilitarian settings at which the objective function is the
social welfare, where the well-known VCG mechanism [9, 16, 33] constitutes such an optimal
mechanism. The study of the algorithmic aspect of mechanism design was initiated by Nisan
and Ronen [26], and since then a significant body of work has been dedicated to optimization
problems from the mechanism design point of view (see e.g. [4, 10, 21]).

There are many situations, though, where the use of payments might be considered unethical
[27], illegal (e.g. organ donations) or even just impractical. For this reason researchers have
started turning their attention to possible ways of achieving truthfulness without the use of
payments. In such a setting, in order to circumvent Social Choice impossibility results (e.g.
the seminal Gibbard-Satterthwaite [15, 31] theorem), domains with richer structure have to be
considered. Procaccia and Tennenholtz [30] were the first to consider achieving truthfulness
without using payments, by sacrificing the optimality of the solution and settling for just an
approximation, in the context of facility location problems. This work was extended in [1, 23].
Similar questions have been considered in the context of inter-domain routing [22], in assignment
problems [11], and in the setting of allocating items to two players (with the use of a certain
artificial currency) [17]. Moreover, exact (as opposed to approximate) mechanism design without
money has a rich history in the social choice literature, e.g. [24] characterizes functions that are
truthfully implementable when the preferences of the agents are single-peaked.

Clearly, truthfulness is a property desired by every mechanism designer; if the mechanism
can ensure that no player can benefit from misreporting, the designer knows what kind of
player behaviour and outcome to expect. Moreover, the focus on truthful mechanisms has been
largely motivated by the Revelation Principle stating that essentially every equilibrium state
of a mechanism can be simulated by a truthful mechanism which achieves the same objective.
However this is no longer possible in the variant we examine here, due to the fact that the
players are bound by their declarations and thus do not have quasi-linear utilities. So, it is no
longer without loss of generality if we restrict attention to truthful mechanisms. For mechanisms
that are not truthful, Price of Anarchy (PoA) [19] analysis is the predominant, powerful tool
for quantifying the potential suboptimality of the outcomes/equilibria; it measures the impact
the lack of coordination (strategic behaviour) has on the solution quality, by comparing it to
the optimal and non-strategic solution.

Scheduling is one of the most influential problems in Algorithmic Game Theory and has
been studied extensively. In its most general form, the goal is to schedule m tasks to n parallel
machines with arbitrary processing times, in order to minimize the makespan. In the front
where payments are allowed, truthfulness comes at no extra cost given the strategic nature of
the machines. Nisan and Ronen [26] first considered the mechanism design approach of the
problem. They prove that the well known VCG mechanism achieves an n-approximation of
the optimal makespan, while no truthful deterministic mechanism can achieve approximation
ratio better than 2. The currently known best lower bound is 2.61 [20] while Ashlagi et al.
[5] proved the tightness of the upper bound for anonymous mechanisms. With respect to

2

randomized (truthful in expectation) mechanisms as well as fractional ones, the best known
bounds are (n + 1)/2 and 2 − 1/n [8, 25]. We note that the aforementioned lower bounds
disregard computational feasibility and simply rely on the requirement for truthfulness.

In an attempt to get positive results when payments are not allowed in the scheduling
context, Koutsoupias [18] first considered the plausible assumption that the machines are bound
by their declarations. This was influenced by the notion of impositions, according to which a
mechanism can restrict the set of reactions available to a player after the outcome is chosen. This
notion appeared in [12, 28] and was applied in facility location as well as digital goods pricing
settings. The notion of winner imposition fits within the framework of approximate mechanism
design without payments. A more powerful framework that is also very much related to this
assumption is the notion of verification that appears in [6, 26, 29]. The mechanisms in this
context are allowed to use payments and simply give or deny payments to machines after they
discover their true execution costs. In particular, the mechanism receives limited information
about the players’ types after observing the computed solution. Relevant works include [2, 7]
where the scheduling problem of selfish tasks is considered again under the assumption that the
players who control the tasks are bound by their declarations.

Our Results. In this work we adopt the model of [18]. For the case of scheduling a single task
Koutsoupias [18] proved that the approximation ratio of any (randomized) truthful mechanism
is at least (n + 1)/2 and gave a mechanism matching this bound, where n is the number of
machines. When applied to many tasks, this mechanism immediately implies an n(n + 1)/2
approximation ratio for the makespan objective. In Section 3 we provide a (non-truthful)
algorithm which performs considerably better than the best truthful mechanism; even the worst
pure equilibrium/outcome of our algorithm achieves an optimal makespan, i.e. our algorithm has
a pure PoA of 1. Pure Nash equilibria constitute a very strong solution concept, that in general
need not even exist, and they are also very desirable from a mechanism designer’s perspective.
For our algorithm we actually prove both existence of pure Nash equilibria and almost optimal
performance guarantees for all of them.1 If we run this algorithm independently for each job, we
get a task-independent and anonymous algorithm yielding a PoA of n for any number of tasks,
which we show to be asymptotically optimal. Next, revisiting truthfulness, in Section 4 we also
show that the mechanism inspired by the LP relaxation of the problem is provably truthful
and achieves an optimal approximation ratio 1 for the fractional scheduling problem of divisible
tasks while providing an n-approximation when interpreted as a randomized mechanism. This
almost matches the lower bound of (n+ 1)/2 for truthful mechanisms known from [18]. Finally,
in Section 5 we briefly study the more optimistic objective of minimizing the makespan at the
best possible equilibrium (instead of the worst one used in the Price of Anarchy metric) and
show that the natural greedy algorithm achieves an optimal Price of Stability.

2 Model and Notation
We have a set N = {1, 2, . . . , n} of unrelated parallel machines and m tasks/jobs that need to
be scheduled to these machines. Throughout the text we assume that matrix t ∈ Rn×m≥0 denotes
the true execution times, i.e. ti,j is the time machine i needs to execute task j. This is private
knowledge of each machine i. Let t̂ denote the corresponding (not necessarily true) declarations
of the machines for these costs.

A (randomized) allocation protocol takes as input the machines’ declarations t̂ and outputs
1Clearly, pure equilibria are a refinement of mixed ones so, from the perspective of mixed Nash equilibrium

analysis, our positive results can additionally be seen as an (almost) optimal Price of Stability guarantee (see
also the discussion at the start of Section 5).

3

an allocation A of tasks to machines where Aij is a 0–1 random variable indicating whether
or not machine i gets allocated task j and a is the corresponding probability distribution of
allocation, i.e. ai,j = Pr [Ai,j = 1] where of course

∑n
i=1 ai,j = 1 for any task j.

We assume that machines are bound by their declarations: if a machine i is allocated some
task j, then she will execute the task for time max{ti,j , t̂i,j}. So, the expected cost/workload of
machine i is defined as

Ci(t̂|ti) =
m∑
j=1

ai,j(t̂) max
{
t̂i,j , ti,j

}
, (1)

while the makespan is computed as the expected maximum execution time

M(t̂|ti) = E
A∼a(t̂)

 max
i=1,...,n

m∑
j=1

Ai,j max
{
t̂i,j , ti,j

} .
To simplify notation, whenever the true execution times t are clear from the context we will
drop them and simply use Ci(t̂) andM(t̂).

The allocation protocol is called truthful, or a truthful mechanism, if it does not give incen-
tives to the machines to misreport their true execution costs. Formally, for every machine i and
declarations matrix t̂,

Ci(ti, t̂−i) ≤ Ci(t̂),

where (xi,y−i) denotes the matrix of declarations where machine i has deviated to xi while
all other machines report costs as in y. The approximation ratio measures the performance
of truthful mechanisms and is defined as the maximum ratio, over all instances, of the objec-
tive value (makespan) under that mechanism over the optimal objective value achievable by a
centralized solution which ignores the truthfulness constraint.

If an allocation protocol is not truthful (we simply refer to it as an algorithm), we measure
its performance by the quality of its Nash equilibria: the states from which no player has
the incentive to unilaterally deviate. The Price of Anarchy (PoA) [19] is established as a
meaningful benchmark and captures the maximum ratio, over all instances, of the objective
value of the worst equilibrium over that of the optimal centralized solution that ignores the
machines’ incentives. For most part of this paper we restrict attention to pure Nash equilibria
where the machines make deterministic reports about their execution costs, and we will from
now on refer to them simply as equilibria. Then, the corresponding benchmark is called pure
PoA. A more optimistic benchmark is the Price of Stability (PoS) [3, 32] which compares the
objective value of the best equilibrium to the value of the optimal centralized solution.

The makespan objective is inherently different if we consider divisible tasks, i.e. fractional
allocations. In that case, each machine is allocated a portion of each task by the protocol and
the makespan is computed as the maximum of the execution times of the machines, namely

Mf (t̂) = max
i=1,...,n

m∑
j=1

αi,j(t̂) max
{
t̂i,j , ti,j

}
where αi,j(t̂) ∈ [0, 1] is the fraction of task j allocated to machine i. Again, it must be that∑n
i=1 αi,j = 1 for any task j. Notice here that each fractional algorithm with allocation frac-

tions α naturally gives rise to a corresponding randomized integral algorithm with allocation
probabilities a = α, whose makespan is within a factor of n from the fractional one2, i.e. for
any cost vector t

Mf (t) ≤M(t) ≤ n · Mf (t). (2)
2This is due to the fact that for any random variables Y1, Y2, . . . , Yn it is E[maxi Yi] ≤ E[

∑
i
Yi] =

∑
i
E[Yi] ≤

nmaxi E[Yi], and also maxi E[Yi] ≤ E[maxi Yi] due to the convexity of the max function.

4

a1 a2

if t̂1 = t̂2
1
2

1
2

if t̂1 < t̂2 < c · t̂1 1
L 1− 1

L

if c · t̂1 ≤ t̂2 1− 1
L
t̂1
t̂2

1
L
t̂1
t̂2

Figure 1: Algorithm A(2)
L,c for scheduling a single task to two machines, parametrized by L > 2 and c > 1. The

probability that machine i = 1, 2 gets the task is denoted by ai, and t̂1, t̂2 are the reported execution times by
the machines.

Except when clearly stated otherwise, in this paper we deal with the integral version of the
scheduling problem.

Social Welfare. An alternative objective, very common in the Mechanism Design literature,
is that of optimizing social welfare, i.e. minimizing the combined costs of all players: W(t̂) =∑n
i=1Ci(t̂). It is not difficult to see2 that the makespan and social welfare objectives are within

a factor of n away, whatever the allocation algorithm a and the input costs t̂ might be:

M(t̂) ≤ W(t̂) ≤ n · M(t̂). (3)

Also notice that for the special case of a single task, since the job is eventually allocated
entirely to some machine, the two objectives coincide no matter the number of machines n,
i.e. M(t̂) = W(t̂). Because of that and the linearity of the social welfare with respect to the
players’ costs, it is easy to verify that all algorithms we present in this paper achieve optimal
ratios of 1 for that objective, both with respect to equilibrium/PoA and truthfulness analysis
(e.g. Theorems 2 and 6). We will not mention that explicitly again in the remaining of the
paper and rather focus on makespan minimization, which is a more challenging objective for
our scheduling problem.

3 Price of Anarchy
For clarity of exposition, we first describe our scheduling algorithm in the special case of just
n = 2 machines (and one task) before presenting the algorithm for the general case of n ≥ 1.
Since we treat the case of only one task in this section, we use t̂i and ti to denote the declared
and true execution time of machine i, respectively, and use ai to denote i’s allocation probability.

3.1 Warm Up: The Case of Two Machines

To simplify notation, throughout this section we will assume without loss of generality that
t̂1 ≤ t̂2, i.e. the input to our algorithm is sorted in nondecreasing order. Notice that the true
execution times t = (t1, t2) do not have to preserve this ordering, since the highest biding
machine might very well in reality not have the fastest execution capabilities.

Our algorithm for the case of two machines, parameterized by two constants L > 2, c > 1,
and denoted by A(2)

L,c, is defined by the allocation probabilities in Fig. 1. Whenever parameter
c is insignificant in a particular context3, we will just use A(2)

L .
3In such a case, as it is for example in the statement of Theorem 1, one can simply pick e.g. c = 1 + 1

L
.

5

The main result of this section is the following theorem, showing that by choosing parameter
L arbitrarily high, the above algorithm can achieve an optimal Price of Anarchy:

Theorem 1. For the case of one task and two machines, algorithm A(2)
L has a (pure) Price of

Anarchy of at most 1 + 1
L (for any L > 2).

We break down the proof of Theorem 1 in distinct claims.

Claim 1. At any equilibrium t̂ the ratio of the two bids must be at least c, i.e. t̂2 ≥ c · t̂1.

Proof. Without loss assume t̂1 6= 0, since otherwise the claim is trivially true. First, assume
for a contradiction that t̂1 < t̂2 < c · t̂1. Then the machine with larger report would have an
incentive to deviate to bid t′2 = max{ct̂1, t2}:

C2(t̂) =
(

1− 1
L

)
max{t̂2, t2} >

1
L
t̂1 = t̂1

Lt′2
max{t′2, t2} = C2(t̂1, t′2)

where the inequality holds since L > 2 and the final two equalities hold because the deviating
bid t′2 equals max{ct̂1, t2}. Thus t̂ = (t̂1, t̂2) could not have been an equilibrium under the
assumption that t̂1 < t̂2 < c · t̂1.

A similar contradiction can be obtained for the remaining case of t̂1 = t̂2. In this case, both
machines have an incentive to deviate to a bid t′1 such that t̂1

c < t′1 < t̂1, since

C1(t̂) = 1
2 max{t̂1, t1} ≥

1
2 max{t′1, t1} >

1
L

max{t′1, t1} = C1(t′1, t̂2).

We can conclude that indeed t̂2 ≥ ct̂1 at any equilibrium.

Claim 2. At any equilibrium t̂ the machine with the larger report will never have underbid, i.e.
t̂2 ≥ t2.

Proof. Assume for a contradiction that t̂2 < t2. Then

C2(t̂) = t̂1

Lt̂2
max{t̂2, t2} = t̂1

Lt̂2
t2 >

t̂1
Lt2

t2 = C2(t̂1, t2),

the first equality holding due to Claim 1 and the last one because t2 > t̂2 ≥ ct̂1.

Claim 3. At any equilibrium t̂ the smaller bid is given by t̂1 = min{t1, t̂2c }.

Proof. Assume for a contradiction that t̂1 6= t′1 = min{t1, t̂2c }. Then, we will show that the
lower bidding machine would have an incentive to deviate from t̂1 to t′1.

Indeed, first consider the case when t̂1 < t′1. Then

C1(t̂) =
(

1− t̂1

Lt̂2

)
max{t̂1, t1} >

(
1− t′1

Lt̂2

)
max{t′1, t1} = C1(t′1, t̂2).

In the remaining case of t̂1 > t′1 = min{t1, t̂2c }, because of Claim 1 it must be that t′1 = t1 <

t̂1 ≤ t̂2
c , thus

C1(t̂) =
(

1− t̂1

Lt̂2

)
max{t̂1, t1} =

(
1− t̂1

Lt̂2

)
t̂1 >

(
1− t1

Lt̂2

)
t1 = C1(t1, t̂2).

where the inequality holds since x 7→
(
1− x

y

)
x is a strictly increasing function for x ∈ [0, y2],

and indeed t1 < t̂1 < t̂2 <
Lt̂2
2 .

6

Claim 4. At any equilibrium t̂ bidding must preserve the relative order of the true execution
times, i.e. t1 ≤ t2.

Proof. For a contradiction assume that t2 < t1, and first consider the case when t2 < t̂1. If we
pick t′2 ∈

(
t̂1
c , t̂1

)
we have

C2(t̂) = t̂1

Lt̂2
max{t̂2, t2} = t̂1

L
>

1
L

max{t′2, t2} = C2(t̂1, t′2),

meaning that the higher bidding machine would have an incentive to deviate from t̂2 to t′2.
For the remaining case of t̂1 ≤ t2 < t1, first note that if t1 ≤ t̂2

c then by Claim 3 we would
immediately derive that t̂1 = t1, which is a contradiction. Hence, by Claim 1 we can assume
that t̂1 = t̂2

c < t1. Then, if t̂2 > t1 we have that

C1(t̂) =
(

1− t̂1

Lt̂2

)
max{t̂1, t1} =

(
1− t̂1

Lt̂2

)
t1 >

1
L
t1 = C1(t1, t̂2),

the inequality holding because t̂1
t̂2

1
L ≤

1
L < 1

2 , and if t̂2 ≤ t1 then, in the same way, for t′1 =
max{t1, ct̂2}

C1(t̂) > 1
L
t1 ≥

t̂2
L

= t̂2
Lt′1

max{t′1, t1} = C1(t′1, t̂2).

Proof of Theorem 1. Claims 1 to 4 imply that the makespan (and thus also the social cost since
we have a single task) of any allocation at equilibrium can be bounded by

M(t̂) =
(

1− t̂1

Lt̂2

)
max{t̂1, t1}+ t̂1

Lt̂2
max{t̂2, t2}

≤ max{t̂1, t1}+ 1
L
t̂1

≤
(

1 + 1
L

)
t1,

where t1 is the optimal makespan.
Also, it is important to mention that it can be verified that there exists at least one (pure

Nash) equilibrium, e.g. reporting t̂1 = t1 and t̂2 = max{Lc · t1, t2}.

3.2 The General Case

The algorithm for two machines (and a single task) can be naturally generalized to the case of
any number of machines n ≥ 2. We note that the essence of the techniques and the core ideas
we presented in Section 3.1 carry over to the general case. So, for clarity of exposition, we only
give the definition of the algorithm here and the proof can be found in Appendix A.

To present our algorithm AL,c we first need to add some notation. We use t̂min and t̂sec to
denote the smallest and second smallest declarations in t̂, and Nmin, Nsec the corresponding
sets of machine indices that make these declarations. (If N = Nmin, i.e. all machines make the
same declaration we define t̂sec = t̂min). Also let nmin = |Nmin| and nsec = |Nsec|.

Our main algorithm AL,c for the case of one task and n machines, parameterized by L >
2(n − 1), c > 1, is defined by the allocation probabilities ai for each machine i ∈ N given in
Fig. 2.

As the following theorem suggests, by picking a high enough value for L the above algorithm
can achieve an optimal performance under equilibrium:

7

i ∈ Nmin i ∈ Nsec i ∈ N\(Nmin∪Nsec)

if t̂min = t̂sec
1
n

1
n

1
n

if t̂min < t̂sec < c · t̂min
(

1
L

)
/nmin

(
1− 1

L

)
/nsec 0

if t̂sec ≥ c · t̂min

1−
∑

k∈N\Nmin

t̂min

L · t̂k

 /nmin
t̂min
L·t̂i

t̂min
L·t̂i

Figure 2: Algorithm AL,c for scheduling a single task to n ≥ 2 machines, parametrized by L > 2(n−1) and c > 1.
The first and second highest reported execution times by the machines are denoted by t̂min and t̂sec respectively,
while Nmin, Nsec denote the corresponding sets of machine indices, and nmin, nsec their cardinalities.

Theorem 2. For the problem of scheduling one task without payments to n ≥ 2 machines,
algorithm AL has a (pure) Price of Anarchy of at most 1 + n−1

L (for any L > 2(n− 1)).

Multiple Tasks. It is not difficult to extend our single-task algorithm and the result of
Theorem 2 to get a task-independent, anonymous algorithm with a pure PoA of n for any
number of tasks m ≥ 1: simply run AL independently for each job. Then, the equilibria of
the extended setting correspond exactly to players not having an incentive to deviate for any
task/round, and the approximation ratio of 1 + n−1

L with respect to the minimum cost mini ti,j
at every such round j = 1, . . . ,m, guarantees optimality with respect to the social welfare and
thus provides indeed a worst-case n-approximation for the makespan objective (see Eq. (3)).
The following result shows that this is in fact (asymptotically) optimal for the natural class of
anonymous4, task-independent algorithms:

Theorem 3. No task-independent, anonymous algorithm for scheduling without payments on
n machines can have a (pure) Price of Anarchy better than n

2 − o(1).

Proof. Fix an algorithm that allocates tasks by running an anonymous single-task algorithm
Aj , independently for each task j. Each algorithm Aj takes as input a declared cost vector
t̂ = (t̂1, . . . , t̂n)> by the machines, where t̂i is the report of machine i for the task, i = 1, . . . , n.
Of course, there is also an underlying true cost vector t. We will study cost vectors tj under
which the corresponding task j has a high execution time M > n3 for all machines except two
of them, namely i = 1 and i = j. Formally, for any j = 1, . . . , n define:

tji =
{

1, if i = 1 or i = j,

M, otherwise.

Let t̂j be a (pure) Nash equilibrium strategy vector under algorithm Aj , when the true execution
costs are tj .

First we notice that we can safely assume that, under any such true instance tj , the
probability of Aj allocating the task to one of the fast machines, at equilibrium, has to
be at least a1(t̂j) + aj(t̂j) ≥ 1 − 1

n2 . Otherwise the expected makespan would be at least
4A scheduling algorithm is called anonymous if it does not discriminate among the players (with respect to their

identities). Formally, any permutation of the players results in the same permutation to the output/allocation
of the algorithm, i.e., for any permutation π of the set of player indices {1, 2, . . . , n} and any input t, it is
a(π · t) = π · a(t), where the dot product π · t denotes the permutation of the rows of matrix t according to π.

8

(
1− 1

n2

)
· 1 + 1

n2 ·M > n + 1 − 1
n2 >

n
2 (while the optimal one is 1, by assigning the task to

machine i = 1) thus easily proving the Price of Anarchy lower bound of the theorem. So, at
equilibrium t̂j , one of machines i = 1 and i = k has to receive the job with probability at least
1
2

(
1− 1

n2

)
= 1

2 −
1

2n2 . Assume that the machine with this property is i = 1; otherwise, due to
the anonymity of algorithm Aj , it is not difficult to see that the vector that results from t̂j by
swapping its entries between positions i = 1 and i = j, and keeping all other machines fixed, is
also a Nash equilibrium and furthermore has the desired property.

Now we are ready to construct the bad instance for our task-independent, anonymous al-
gorithm. Consider m = n jobs, job j = 1, 2, . . . , n having true execution time vector tj . By
the previous analysis for the single-task algorithms Aj , t̂ = (t̂1, t̂2, . . . , t̂n) is a Nash equi-
librium for our multi-task algorithm, and the probability that machine i = 1 is the one al-
located task j is at least 1

2 −
1

2n2 , for every step j. So, by utilizing a standard Chernoff
bound5 it is straightforward to see that the probability that machine i = 1 gets more than
(1− o(1)) · n

(
1
2 −

1
2n2

)
= (1− o(1))

(
n
2 − o(1)

)
jobs in total is at least 1− o(1), resulting to an

expected makespan of at least n
2 −o(1). The expected optimal makespan is 1: just allocate task

j to machine j, for all j = 1, 2, . . . , n.

Although anonymity is definitely a very natural assumption in the scheduling domain (see
e.g. the discussion in [5]), the above results do not rule out the possibility of an improved Price
of Anarchy if the requirements of Theorem 3 are relaxed, and as a matter of fact we find the
design of such algorithms, that will take into consideration non-trivial correlations between tasks
and among machines, to be one of the most interesting and challenging directions for future
work. However keep in mind that, as Theorem 9 in Appendix B.1 demonstrates, just relaxing
the anonymity constraint would not suffice in order to hope for constant-factor performance.

4 Truthful Mechanisms
In this section we turn our attention to truthful algorithms for many tasks and provide a mech-
anism that achieves approximation ratio n, almost matching the (n+ 1)/2 known lower bound
on truthfulness [18]. The best known ratio before our work was n(n+1)/2, achieved by running
the algorithm of Koutsoupias [18] independently for each task. Unfortunately this guarantee
turns out to be tight for the particular algorithm (see Appendix B.2 for a bad instance), thus
here we have to devise more involved, non task-independent mechanisms.

4.1 The LP mechanism

It is a known fact that the LP relaxation of a problem can be a useful tool for designing
mechanisms (both randomized and fractional). What the LP mechanism essentially does is
that it forces all machines to have equal expected (minimum) cost. This aligns the goal of
the designer with the objective of the machines, thus making it easier for truthfulness to be
guaranteed; similar in spirit is the Equal Cost mechanism of [13]. We recall that the LP
relaxation for the scheduling problem is as shown in Fig. 3.

We denote an optimal solution6 to the above LP by αLP(t), and the optimal objective value
by µLP

t (dropping the LP superscript whenever this is clear from the context). The vector αLP(t)

5 Use the tail inequality Pr [X ≤ (1− δ)µ] ≤ e−
δ2
2 µ where X is the number of tasks that are allocated to

machine i = 1, µ = n
(

1
2 −

1
2n2

)
, and choose δ ≤ n− 1

3 .
6Notice that although µLP

t is unique, there might be various allocation fractions αi,j that give rise to the
optimal makespan µLP

t , in which case we can choose an arbitrary one for αLP
t , e.g. take the lexicographically

smaller.

9

minimize µ

∀j :
n∑
i=1

αi,j = 1 (each task is allocated entirely)

∀i : µ−
m∑
j=1

αi,jti,j ≥ 0 (the cost of each machine does not exceed makespan)

∀i, j : αi,j ≥ 0 (the allocation probabilities are non-negative)

Figure 3: The LP relaxation for the scheduling problem. Our LP mechanism is defined by an optimal solution
αLP
i,j (t) to this program.

can be straightforwardly interpreted as allocation probabilities or allocation fractions giving
rise to a randomized or a fractional mechanism, respectively. We refer to the corresponding
mechanisms as the LP randomized and the LP fractional mechanism. In Theorem 4 we show
that both mechanisms are truthful, hence, we can think of µLP

t as corresponding to the maximum
(expected) cost/workload perceived by any machine.

It is a simple observation that in an optimal solution the workload must be fully balanced
among all machines and that µLP can only increase when all execution times increase, i.e.
µLP

t ≤ µLP
t′ for t ≤ t′ (pointwise).

Note that the proof of Theorem 4 is identical in both cases where the α corresponds to
fractions or allocation probabilities. Hence, the result holds for both the LP randomized and
the LP fractional mechanisms. Note that a strategy is (weakly) dominant for a machine if the
strategy will result in a cost at most equal to the cost of any other strategy, for every choice of
strategies/declarations of the other machines.

Theorem 4. Under the LP (fractional or randomized) mechanism, truthfully reporting the
execution times is a (weakly) dominant strategy for every machine.

Proof. Recall that t and t̂ denote the true and (some) declared execution times, respectively,
of the machines. Fix some machine i and define matrix tmaxi as follows: row i, tmaxi

i , is the
vector of point-wise maxima between true and declared times for machine i, that is

tmaxi
i = (max{t̂i,1, ti,1},max{t̂i,2, ti,2}, . . . ,max{t̂i,m, ti,m}),

while every other row k 6= i is tmaxi
k = t̂k, i.e. tmaxi = (tmaxi

i , t̂−i). Seen as a matrix of
declarations, tmaxi corresponds to machine i’s deviation from t̂i to tmaxi

i , while each other
machine makes declarations according to t̂. Then we can derive the following:

m∑
j=1

αk,j(t̂)tmaxi
k,j =

m∑
j=1

αk,j(t̂)t̂k,j = µt̂ =
m∑
j=1

αi,j(t̂)t̂i,j ≤
m∑
j=1

αi,j(t̂)tmaxi
i,j

and thus from the optimality of the LP solutions it must be that

µtmaxi ≤ max
l=1,...,n


m∑
j=1

αl,j(t̂)tmaxi
l,j

 =
m∑
j=1

αi,j(t̂)tmaxi
i,j .

Bringing everything together and taking into consideration that (ti, t̂−i) ≤ tmaxi we get

Ci(t̂) =
m∑
j=1

αi,j(t̂) max
{
t̂i,j , ti,j

}
≥ µtmaxi ≥ µ(ti,t̂−i) =

m∑
j=1

αi,j(ti, t̂−i)ti,j = Ci(ti, t̂−i),

10

which shows that indeed, whatever the declarations of the other machines t̂−i, machine i is
always (weakly) better off by truthfully reporting ti.

Theorem 4 gives rise to the following two results.

Theorem 5. The LP fractional mechanism has approximation ratio 1 for the fractional schedul-
ing problem without money, for any number of machines and tasks.

As discussed in Section 2, by (2) we know that the above performance guarantee can de-
teriorate at most by a factor of n when we use the fractions as allocation probabilities for the
integral case:

Theorem 6. The LP randomized mechanism has approximation ratio at most n for (integrally)
scheduling any number of tasks to n machines without money.

4.2 The Proportional Mechanism

In this section we briefly consider the proportional mechanism which allocates to each machine
i a t−1

i /
∑n
k=1 t

−1
k fraction of the task or probability of getting the task, respectively, depending

on whether we consider the randomized or the fractional variant. In [18] it was shown that this
algorithm is truthful and that its approximation ratio for randomized allocations of a single
task is n. With the following theorem we wish to stress the difference between fractional and
(randomized) integral allocations. The theorem is about the fractional case and proves the
optimality of the proportional mechanism for scheduling one task without payments.

Theorem 7. The proportional mechanism has an optimal approximation ratio of 1 for the
fractional scheduling problem of a single task. For m tasks the approximation ratio increases to
at least m.

Proof. First consider the case of a single task. Under the proportional mechanism each machine
i is allocated an αi = t−1

i /
∑n
k=1 t

−1
k fraction of the task and executes it for time ti. Hence, all

machines have the same execution time (makespan) equal to

Mf = 1∑
i t
−1
i

.

In the optimal fractional allocation, all machines will have the same execution cost, otherwise
we could remove an ε fraction of the task from a machine with high makespan and allocate it to
a machine with small workload, hence reducing the makespan. This implies that for the optimal
allocation fractions {α∗i }ni=1 it holds that t1α∗1 = t2α

∗
2 = · · · = tnα

∗
n. Thus, for any machine i it

is α∗i = t1
ti
α∗1, and by the fact that

∑
i α
∗
i = 1 we get that

∑
i t
−1
i = 1

α∗1t1
and so

Mf = α∗1t1 = OPTf .

However the above result does not generalize to the case of many tasks, where the pro-
portional mechanism is run independently for each task. First, it is easy to see that this
independence preserves truthfulness. Secondly, it also preserves the optimality of the propor-
tional mechanism with respect to social welfare. But regarding makespan, we will prove a lower
bound of m. Consider the following instance with m tasks and m machines. Every machine i
can execute all tasks in time 1, except from the i-th task that can be run very quickly in time
M−1, where M � 1. Formally,

tij =
{
M−1, j = i

1, j 6= i.

11

Then, the proportional mechanism computes allocation fractions

αij =
{

M
M+m−1 , j = i

1
M+m−1 , j 6= i,

which results to a makespan of
m∑
j=1

αijtij = M−1 M

M +m− 1 + (m− 1) 1
M +m− 1 = m

M +m− 1 .

On the other hand, the allocation that assigns each task j to its fastest machine j, i.e. αij = 1 for
i = j, results to a makespan ofM−1, giving an approximation ratio lower bound of Mm

M+m−1 → m
as M →∞.

5 Price of Stability and Mixed Equilibria
In this section we attempt a more optimistic approach regarding the problem of scheduling
without payments. The Price of Stability can be used to measure the best possible performance
of a given mechanism in practice, i.e., it can provide some indication on what is its potential
power or, in other words, what is the best we can hope for given a specific mechanism. There
are settings where this can be very useful, e.g. if the context allows the mechanism to suggest a
specific strategy profile to the players, and the players then decide if it is in their best interest
to follow the suggested strategies.

We consider the benchmark of the best (mixed Nash) equilibrium and prove that the follow-
ing, most natural greedy algorithm can achieve optimality: allocate each task independently to
the machine declaring the minimum cost (breaking ties arbitrarily).

Theorem 8. The Price of Stability of the Greedy algorithm is 1 for scheduling without money
any number of tasks to any number of machines.

Proof. We will prove the stronger statement that every feasible (integral) allocation of m tasks
to n machines can arise at some (mixed) Nash equilibrium of the Greedy mechanism, from
which the theorem immediately follows. First we observe the following, not difficult to prove
fact:
Fact. Fix some task and a nonnegative constant T . If all but one machine i∗ play the mixed
strategy of declaring (independently) a value x ∈ [T,∞) with probability distribution F (x) =
1 − n−1

√
T/x, and the remaining machine i∗ declares deterministically any value x∗ > T , then

i∗’s declared cost will be the minimum among all declarations for the task with probability
(1− F (x∗))n−1. Thus, under the Greedy mechanism, machine i∗ will incur an expected cost of
at least x∗(1− F (x∗))n−1 = T for executing the particular task.

Consider any true instance t of the scheduling without payments problem and fix a particular
allocation A of tasks to machines. For each task j let i∗j ∈ N denote the machine that j
is assigned to under allocation A. Consider now the following strategy profile: machine i∗j
truthfully declares her cost for task j, i.e. t̂i∗j ,j = ti∗j ,j ≡ Tj deterministically, while all other
machines k 6= i∗j each play (independently) a mixed strategy of declaring for task j a higher
value of t̂k,j = x > Tj with cumulative distribution Fj(x) = 1 − n−1

√
Tj/x. We argue that this

constitutes a Nash equilibrium for the Greedy mechanism. Indeed, under these declarations the
Greedy algorithm allocates each task j to machine i∗j for a cost (of executing this task) of Tj . But
by the previous fact, machine i∗j cannot avoid incurring at least the same cost if misreporting
any higher execution time x∗ > Tj , while if she underbids x∗ < Tj she will obviously still get
the task for effectively the same cost of max{x∗, ti∗j ,j} = Tj .

12

Acknowledgements. We thank the anonymous reviewers for their careful reading of our
manuscript and their valuable feedback.

References
[1] N. Alon, M. Feldman, A. D. Procaccia, and M. Tennenholtz. Strategyproof approximation

of the minimax on networks. Mathematics of Operations Research, 35(3):513–526, 2010.

[2] E. Angel, E. Bampis, F. Pascual, and A.-A. Tchetgnia. On truthfulness and approximation
for scheduling selfish tasks. Journal of Scheduling, 12(5):437–445, 2009.

[3] E. Anshelevich, A. Dasgupta, J. Kleinberg, É. Tardos, T. Wexler, and T. Roughgarden.
The price of stability for network design with fair cost allocation. SIAM J. on Computing,
38(4):1602–1623, 2008.

[4] A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In FOCS, pages
482–491, 2001.

[5] I. Ashlagi, S. Dobzinski, and R. Lavi. Optimal lower bounds for anonymous scheduling
mechanisms. Mathematics of Operations Research, 37(2):244–258, 2012.

[6] V. Auletta, R. De Prisco, P. Penna, and G. Persiano. The power of verification for one-
parameter agents. In ICALP, pages 171–182, 2004.

[7] G. Christodoulou, L. Gourvès, and F. Pascual. Scheduling selfish tasks: About the perfor-
mance of truthful algorithms. In COCOON, pages 187–197, 2007.

[8] G. Christodoulou, E. Koutsoupias, and A. Kovács. Mechanism design for fractional schedul-
ing on unrelated machines. ACM Trans. Algorithms, 6(2):38:1–38:18, 2010.

[9] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11(1):17–33, 1971.

[10] P. Dhangwatnotai, S. Dobzinski, S. Dughmi, and T. Roughgarden. Truthful approximation
schemes for single-parameter agents. SIAM J. Comput., 40(3):915–933, 2011.

[11] S. Dughmi and A. Ghosh. Truthful assignment without money. In EC, pages 325–334,
2010.

[12] D. Fotakis and C. Tzamos. Winner-imposing strategyproof mechanisms for multiple facility
location games. In WINE, pages 234–245, 2010.

[13] D. Fotakis and C. Tzamos. Strategyproof facility location for concave cost functions. In
EC, pages 435–452, 2013.

[14] Y. Giannakopoulos, E. Koutsoupias, and M. Kyropoulou. The anarchy of scheduling with-
out money. In 9th International Symposium on Algorithmic Game Theory (SAGT), pages
302–314, 2016.

[15] A. Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41(4):
587–601, 1973.

[16] T. Groves. Incentives in Teams. Econometrica, 41(4):617–31, 1973.

[17] M. Guo and V. Conitzer. Strategy-proof allocation of multiple items between two agents
without payments or priors. In AAMAS, pages 881–888, 2010.

13

[18] E. Koutsoupias. Scheduling without payments. Theory of Computing Systems, 54(3):
375–387, 2014.

[19] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science Review, 3
(2):65–69, 2009.

[20] E. Koutsoupias and A. Vidali. A lower bound of 1+ϕ for truthful scheduling mechanisms.
Algorithmica, 66(1):211–223, 2013.

[21] R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear program-
ming. J. ACM, 58(6):25:1–25:24, 2011.

[22] H. Levin, M. Schapira, and A. Zohar. Interdomain routing and games. In STOC, pages
57–66, 2008.

[23] P. Lu, X. Sun, Y. Wang, and Z. A. Zhu. Asymptotically optimal strategy-proof mechanisms
for two-facility games. In EC, pages 315–324, 2010.

[24] H. Moulin. On strategy-proofness and single peakedness. Public Choice, 35(4):437–455,
1980.

[25] A. Mu’alem and M. Schapira. Setting lower bounds on truthfulness: Extended abstract.
In SODA, pages 1143–1152, 2007.

[26] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior,
35(1/2):166–196, 2001.

[27] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory.
Cambridge University Press, New York, NY, USA, 2007.

[28] K. Nissim, R. Smorodinsky, and M. Tennenholtz. Approximately optimal mechanism design
via differential privacy. In ITCS, pages 203–213, 2012.

[29] P. Penna and C. Ventre. Optimal collusion-resistant mechanisms with verification. Games
and Economic Behavior, 86:491 – 509, 2014.

[30] A. D. Procaccia and M. Tennenholtz. Approximate mechanism design without money. In
EC, pages 177–186, 2009.

[31] M. A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspon-
dence theorems for voting procedures and social welfare functions. Journal of Economic
Theory, 10(2):187 – 217, 1975.

[32] A. S. Schulz and N. S. Moses. On the performance of user equilibria in traffic networks. In
SODA, pages 86–87, 2003.

[33] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of
Finance, 16(1):8–37, 1961.

14

A Proof of Theorem 2
Analogously to the proof of Theorem 1, we break down our exposition into distinct claims.

Claim 5. At any equilibrium t̂ it holds that t̂sec ≥ c · t̂min, i.e., the minimum declaration differs
from the remaining declarations by at least a factor of c.

Proof. Consider an equilibrium t̂ and assume for a contradiction that t̂min < t̂sec < c · t̂min at
an equilibrium. Consider a machine i ∈ Nsec and her deviation to t̂′i = max{c · t̂i, ti}. It holds
that

Ci(t̂) =
(

1− 1
L

) max{t̂sec, ti}
nsec

>
1
L
t̂min = t̂min

L · t̂′i
t̂′i = t̂min

L · t̂′i
max{t̂′i, ti} ≥ Ci(t̂′i, t̂−i)

where the first inequality holds since t̂sec > t̂min, and L > 2(n − 1) ≥ nsec + 1 by assumption,
and the second inequality holds because i’s cost will be either t̂min

L·t̂′i
t̂′i or 0 depending on whether

there exists an other declaration in (t̂min, c · t̂min). If t̂min = t̂sec, i.e. all machines declare t̂min,
consider any machine i and let t̂min

c < t̂′i < t̂min. Then

Ci(t̂) = 1
n

max{t̂min, ti} >
1
L

max{t̂min, ti} ≥
1
L

max{t̂′i, ti} = Ci(t̂′i, t̂−i)

where the first inequality holds since L > 2(n− 1) ≥ n for n ≥ 2. We can conclude that, at any
equilibrium of the game, t̂sec has to be at least as large as c · t̂min. An immediate consequence
is that all non-minimal declarations are at least equal to c · t̂min.

Claim 6. At any equilibrium t̂ it holds that t̂i ≥ ti for any machine i ∈ N \ Nmin, i.e. any
machine whose declaration is not the minimum one, declares a value at least equal to its true
execution cost ti.

Proof. Consider an equilibrium t̂ and assume for a contradiction that t̂i < ti for some machine
i /∈ Nmin. Recall that from Claim 5 we have that t̂i ≥ c · t̂min. But deviating from t̂i to ti is
always beneficial for this machine, as

Ci(t̂) = t̂min

L · t̂i
max{t̂i, ti} = t̂min

L · t̂i
ti >

t̂min
L · ti

ti = Ci(ti, t̂−i),

which proves our claim.

Claim 7. At any equilibrium t̂ it holds that nmin = 1, i.e. only one machine makes the minimum
declaration.

Proof. Consider an equilibrium t̂ and assume for a contradiction that nmin > 1. Let i be any
machine such that i ∈ Nmin. It holds that

Ci(t̂) =

1−
∑

k∈N\Nmin

t̂min

L · t̂k

 max{t̂min, ti}
nmin

>

1−
∑

k∈N\Nmin

t̂min

L · t̂min

 max{t̂min, ti}
nmin

=
(

1− n− nmin
L

) max{t̂min, ti}
nmin

15

>
1
L

max{t̂min, ti}

≥ t̂min
L

= t̂min

L ·max{t̂sec, ti}
max{t̂sec, ti}

= Ci(max{t̂sec, ti}, t̂−i)

where the first inequality holds since t̂k > t̂min for all k ∈ N \Nmin, the second inequality holds
since L > 2(n− 1) ≥ n by assumption and the final equality holds since there would be at least
one other declaration t̂min and since by Claim 5 we have that t̂sec ≥ c · t̂min.

Claim 8. At any equilibrium t̂ it holds that t̂min = min{ti, t̂sec
c } for machine i = Nmin, i.e., if i is

the machine that makes the minimum declaration then that declaration is equal to min{ti, t̂sec
c }.

Proof. Consider an equilibrium t̂ and note that i is well defined from Claim 7. Assume for a
contradiction that t̂min < min{ti, t̂sec

c }. We have

Ci(t̂) =

1−
∑

k∈N\Nmin

t̂min

L · t̂k

 max{t̂min, ti}
nmin

=

1−
∑

k∈N\Nmin

t̂min

L · t̂k

 ti
>

1−
∑

k∈N\Nmin

min{ti, t̂sec
c }

L · t̂k

 ti
= Ci

(
min

{
ti,
t̂sec
c

}
, t̂−i

)
,

where we have used nmin = 1 proved in Claim 7. Now, it suffices to show that t̂ is not an
equilibrium if t̂min > min{ti, t̂sec

c }. We know from Claim 5, that at any equilibrium t̂min ≤ t̂sec
c ,

so we only need to consider the case where ti < t̂min ≤ t̂sec
c . Then

Ci(t̂|t) =

1−
∑

k∈N\Nmin

t̂min

L · t̂k

 max{t̂min, ti}
nmin

=

1−
∑

k∈N\Nmin

t̂min

L · t̂k

 t̂min (4)

>

1−
∑

j∈N\Nmin

ti

L · t̂k

 ti
= Ci(ti, t̂−i|t),

where the inequality holds since 2t̂min
∑
k∈N\Nmin

1
L·t̂k

< 2t̂min
n−1
Lt̂min

< 2(n−1)
L < 1 and the

derivative of (4) with respect to t̂min < mink tk is positive for L > 2(n− 1).

Claim 9. At any equilibrium t̂ it holds that ti ≤ tk for machine i = Nmin and any machine
k ∈ N , i.e., the true execution cost of the machine that makes the minimum declaration is
indeed at most equal to the true execution cost of any other machine.

16

Proof. Consider an equilibrium t̂ and assume for a contradiction that there exists some machine
k ∈ N \Nmin such that tk < ti. We consider cases depending on the relative order of t̂min, ti,
t̂i, and tk. Assume that tk < t̂min and let t̂min

c < t̂′k < t̂min. Then

Ck(t̂) = t̂min

L · t̂k
max{t̂k, tk} = t̂min

L
>

1
L

max{t̂′k, tk} = Ci(t̂′i, t̂−i)

where the second equality holds by Claim 6. This implies that at any equilibrium t̂ it holds
that tk ≥ t̂min. Recall that from Claim 8 we know that t̂min = min

{
ti,

t̂sec
c

}
, so if ti ≤ t̂sec/c we

immediately get the desired inequality tk ≥ ti. It remains to check the case t̂sec
c = t̂min ≤ tk < ti.

It holds that

Ci(t̂) =

1−
∑

k∈N\Nmin

t̂min

L · t̂k

 max{t̂min, ti}
nmin

=

1−
∑

k∈N\Nmin

t̂min

L · t̂k

 ti
>

(
1− n− 1

L

)
ti

>
1
L
ti (5)

where the last inequality holds since L > 2(n−1) ≥ n by assumption. Note that if ti < t̂sec then
the right hand side of (5) is equal to the cost the machine would incur by declaring her true
cost, i.e., Ci(ti, t̂−i|t). Otherwise, if ti ≥ t̂sec then we get from (5) and for t̂′i ≥ max{ti, c · t̂sec}
that

Ci(t̂) > 1
L
ti ≥

t̂sec

L · t̂′i
t̂′i = t̂sec

L · t̂′i
max{t̂′i, ti} ≥ Ci(t̂′i, t̂−i).

In each of the cases examined above we conclude that a beneficial deviation exists for the
corresponding machine which is a contradiction to the original assumption that the starting
configuration was at equilibrium.

Proof of Theorem 2. We now use the above claims to bound the makespan at any equilibrium
t̂ of the game. We denote by tmin the minimum true execution cost of any machine (note
that from Claim 9 we know that the machine who makes the minimum declaration t̂min indeed
achieves the minimum true cost tmin). Then, the expected makespan is

M(t̂) =

1−
∑

k∈N\Nmin

t̂min

L · t̂k

 max{t̂min, tmin}
nmin

nmin +
∑

k∈N\Nmin

t̂min

L · t̂k
max{t̂k, tk}

≤ max{t̂min, tmin}+ t̂min
L

(n− 1)

≤ tmin + tmin(n− 1)
L

≤
(

1 + n− 1
L

)
tmin,

where t̂min is the optimal makespan. For the first equality we use Claim 5, for the first inequality
we use Claims 6 and 7, and for the second inequality we use Claims 8 and 9.

It can be easily verified that there exists at least one equilibrium t̂, e.g. choose t̂i∗ = ti∗ = tmin
for a machine i∗ ∈ argmini ti that has a minimum true execution cost and t̂k = max{Lc·tmin, tk}
for all other machines k ∈ N \ {i}.

17

B Lower Bounds

B.1 Task-Independent Algorithms

Theorem 9. No task-independent algorithm for scheduling without payments on n machines
can have a Price of Anarchy better than 1

2
√
n− o(1).

Proof. The bad instance here is simpler than the one in the proof of Theorem 3: consider m = n
tasks, for all of which machine i = 1 has true execution cost 1 and all remaining machines are
way slower with costs M =

√
n.

We can assume that at every single-task step there has to be an equilibrium where the fast
machine i = 1 gets the job with probability at least p = 1

2 , otherwise the expected makespan of
that single-shot algorithm would be at least p · 1 + (1− p) ·M = 1

2
√
n+ 1

2 , resulting indeed in
the desired Price of Anarchy lower bound since the optimal cost is 1 (by allocating the task to
machine i = 1).

Therefore, like in the proof of Theorem 3, it is not difficult to deploy a Chernoff bound and
see that the probability of machine i = 1 receiving a p(1−o(1)) = 1

2−o(1) fraction of the overall
number of jobs is at least 1− o(1), thus resulting in an expected makespan of at least n

2 − o(1).
The optimal allocation has a cost of M =

√
n, simply allocating each task j to machine j. This

gives indeed a Price of Anarchy lower bound of
n
2−o(1)√

n
= 1

2
√
n− o(1).

B.2 The Mechanism of Koutsoupias [18]

Consider an instance of n machines and n tasks, machine i having (true) execution cost of 1 for
task i and M > 1 (to be determined later) for all other tasks. Formally,

ti,j =
{

1, j = i,

M, j 6= i.

Consider running the (truthful) mechanism of Koutsoupias [18] independently for each task.
Then (see [18, Eq. (1)]) the probability of a specific task j getting assigned to its unique “fast”
machine (that is machine i = j having execution cost 1) can be computed as

p =
∫ 1

0

(
1− y

M

)n−1
dy = M

n

[
1−

(
1− 1

M

)n]
.

Thus, the probability of at least one task being allocated to a “slow” machine is 1 − pn, since
all tasks are being assigned independently. At such an event, the resulting makespan would be
at least M (there would be at least one machine executing a task of duration M). So, the total
expected makespan is at least (1− pn)M , which by selecting M = n3 becomes

(1− pn)M = n3 − n2n+3
[
1−

(
1− 1

n3

)n]n
and it is a matter of straightforward calculations to verify that for any number of machines
n ≥ 2 this is lower bounded by

(1− pn)M ≥ n(n+ 1)
2 + 3

n

= n(n+ 1)
2 + o(1) .

Taking into consideration that the optimal makespan is 1 (by allocating each task j to machine
j), this gives indeed a lower bound of n(n+1)

2+o(1) to the expected makespan that asymptotically
matches the mechanism’s upper bound of n(n+1)

2 given in [18].

18

	1 Introduction
	2 Model and Notation
	3 Price of Anarchy
	3.1 Warm Up: The Case of Two Machines
	3.2 The General Case

	4 Truthful Mechanisms
	4.1 The LP mechanism
	4.2 The Proportional Mechanism

	5 Price of Stability and Mixed Equilibria
	A Proof of Theorem 2
	B Lower Bounds
	B.1 Task-Independent Algorithms
	B.2 The Mechanism of Koutsoupias

