54 research outputs found

    FastML: a web server for probabilistic reconstruction of ancestral sequences

    Get PDF
    Ancestral sequence reconstruction is essential to a variety of evolutionary studies. Here, we present the FastML web server, a user-friendly tool for the reconstruction of ancestral sequences. FastML implements various novel features that differentiate it from existing tools: (i) FastML uses an indel-coding method, in which each gap, possibly spanning multiples sites, is coded as binary data. FastML then reconstructs ancestral indel states assuming a continuous time Markov process. FastML provides the most likely ancestral sequences, integrating both indels and characters; (ii) FastML accounts for uncertainty in ancestral states: it provides not only the posterior probabilities for each character and indel at each sequence position, but also a sample of ancestral sequences from this posterior distribution, and a list of the k-most likely ancestral sequences; (iii) FastML implements a large array of evolutionary models, which makes it generic and applicable for nucleotide, protein and codon sequences; and (iv) a graphical representation of the results is provided, including, for example, a graphical logo of the inferred ancestral sequences. The utility of FastML is demonstrated by reconstructing ancestral sequences of the Env protein from various HIV-1 subtypes. FastML is freely available for all academic users and is available online at http://fastml.tau.ac.i

    Protein stability: a single recorded mutation aids in predicting the effects of other mutations in the same amino acid site

    Get PDF
    Motivation: Accurate prediction of protein stability is important for understanding the molecular underpinnings of diseases and for the design of new proteins. We introduce a novel approach for the prediction of changes in protein stability that arise from a single-site amino acid substitution; the approach uses available data on mutations occurring in the same position and in other positions. Our algorithm, named Pro-Maya (Protein Mutant stAbilitY Analyzer), combines a collaborative filtering baseline model, Random Forests regression and a diverse set of features. Pro-Maya predicts the stability free energy difference of mutant versus wild type, denoted as ΔΔG

    MuD: an interactive web server for the prediction of non-neutral substitutions using protein structural data

    Get PDF
    The discrimination between functionally neutral amino acid substitutions and non-neutral mutations, affecting protein function, is very important for our understanding of diseases. The rapidly growing amounts of experimental data enable the development of computational tools to facilitate the annotation of these substitutions. Here, we describe a Random Forests-based classifier, named Mutation Detector (MuD) that utilizes structural and sequence-derived features to assess the impact of a given substitution on the protein function. In its automatic mode, MuD is comparable to alternative tools in performance. However, the uniqueness of MuD is that user-reported protein-specific structural and functional information can be added at run-time, thereby enhancing the prediction accuracy further. The MuD server, available at http://mud.tau.ac.il, assigns a reliability score to every prediction, thus offering a useful tool for the prioritization of substitutions in proteins with an available 3D structure

    Spatiotemporal model for the progression of transgressive dunes

    No full text
    Transgressive dune fields, which are active sand areas surrounded by vegetation, exist on many coasts. In some regions like in Fraser Island in Australia, small dunes shrink while large ones grow, although both experience the same climatic conditions. We propose a general mathematical model for the spatiotemporal dynamics of vegetation cover on sand dunes and focus on the dynamics of transgressive dunes. Among other possibilities, the model predicts growth parallel to the wind with shrinkage perpendicular to the wind, where, depending on geometry and size, a transgressive dune can initially grow although eventually shrink. The larger is the initial area the slower its stabilization process. The model's predictions are supported by field observations from Fraser Island in Australia
    corecore