237 research outputs found

    Dynamic mechanical (brush) allodynia in cluster headache: a prevalence study in a tertiary headache clinic.

    Get PDF
    Cutaneous allodynia (CA) has been described in migraine and has been related to treatment failure. There are little data about the incidence of CA in other primary headache syndromes such as cluster headache (CH). The objectives of this study are to evaluate the prevalence of dynamic mechanical (brush) allodynia (BA) in CH patients attending a tertiary headache clinic, and to assess its relation to disease characteristics. Adult patients with episodic or chronic CH were recruited. We obtained demographic data and data on disease characteristics through a structured questionnaire, and tested the patients for brush allodynia BA by applying a 4 x 4 gauze pad over the V1, C2/C3 and C8 skin areas bilaterally. The prevalence of allodynia in the entire study population and in the different sub-groups was calculated. We also examined the association between CA and demographic parameters, and its association with disease characteristics. Forty-one patients were recruited (22 men, 19 women; mean age 44.9 years). Twenty-two had chronic CH (CCH) and 19 had episodic CH (ECH). Mean disease duration was 14.1 years (12.3 the CCH group and 15.7 in the ECH group). Overall, 20 (49%) patients were allodynic. There was no statistically significant association between the presence of allodynia and age, gender, diagnosis (episodic vs. chronic CH), disease duration or disease severity. In conclusion, BA was common in this CH patient sample. The therapeutic implications of the presence of BA in CH need to be further studied

    Is phonophobia associated with cutaneous allodynia in migraine?

    Get PDF
    ABSTRACT Objective To determine whether phonophobia and dynamic mechanical (brush) allodynia are associated in episodic migraine (EM). Methods Adult patients with EM were prospectively recruited. A structured questionnaire was used to obtain demographic and migraine related data. Phonophobia was tested quantitatively using a real time sound processor and psychoacoustic software. Sound stimuli were pure tones at frequencies of 1000 Hz, 4000 Hz and 8000 Hz, delivered to both ears at increasing intensities, until an aversive level was reached. Allodynia was assessed by brushing the patient’s skin with a gauze pad at different areas. Patients were tested both between and during acute attacks. Sound aversion thresholds (SATs) in allodynic and non-allodynic patients were compared. Results Between attacks, SATs were lower in allodynic compared with non-allodynic patients, with an average difference of 5.7 dB (p¼0.04). During acute attacks, the corresponding average SAT difference (allodynicenon-allodynic) was 15.7 dB (p¼0.0008). There was a significant negative correlation between allodynia scores and SATs, both within and between attacks. Conclusions The results support an association between phonophobia and cutaneous allodynia in migraine

    On the evolution of decoys in plant immune systems

    Full text link
    The Guard-Guardee model for plant immunity describes how resistance proteins (guards) in host cells monitor host target proteins (guardees) that are manipulated by pathogen effector proteins. A recently suggested extension of this model includes decoys, which are duplicated copies of guardee proteins, and which have the sole function to attract the effector and, when modified by the effector, trigger the plant immune response. Here we present a proof-of-principle model for the functioning of decoys in plant immunity, quantitatively developing this experimentally-derived concept. Our model links the basic cellular chemistry to the outcomes of pathogen infection and resulting fitness costs for the host. In particular, the model allows identification of conditions under which it is optimal for decoys to act as triggers for the plant immune response, and of conditions under which it is optimal for decoys to act as sinks that bind the pathogen effectors but do not trigger an immune response.Comment: 15 pages, 6 figure

    Developmental dyscalculia: a dysconnection syndrome?

    Get PDF
    Numerical understanding is important for everyday life. For children with developmental dyscalculia (DD), numbers and magnitudes present profound problems which are thought to be based upon neuronal impairments of key regions for numerical understanding. The aim of the present study was to investigate possible differences in white matter fibre integrity between children with DD and controls using diffusion tensor imaging. White matter integrity and behavioural measures were evaluated in 15 children with developmental dyscalculia aged around 10years and 15 matched controls. The main finding, obtained by a whole brain group comparison, revealed reduced fractional anisotropy in the superior longitudinal fasciculus in children with developmental dyscalculia. In addition, a region of interest analysis exhibited prominent deficits in fibres of the superior longitudinal fasciculus adjacent to the intraparietal sulcus, which is thought to be the core region for number processing. To conclude, our results outline deficient fibre projection between parietal, temporal and frontal regions in children with developmental dyscalculia, and therefore raise the question of whether dyscalculia can be seen as a dysconnection syndrome. Since the superior longitudinal fasciculus is involved in the integration and control of distributed brain processes, the present results highlight the importance of considering broader domain-general mechanisms in the diagnosis and therapy of dyscalculia

    A biophysical model of cell adhesion mediated by immunoadhesin drugs and antibodies

    Get PDF
    A promising direction in drug development is to exploit the ability of natural killer cells to kill antibody-labeled target cells. Monoclonal antibodies and drugs designed to elicit this effect typically bind cell-surface epitopes that are overexpressed on target cells but also present on other cells. Thus it is important to understand adhesion of cells by antibodies and similar molecules. We present an equilibrium model of such adhesion, incorporating heterogeneity in target cell epitope density and epitope immobility. We compare with experiments on the adhesion of Jurkat T cells to bilayers containing the relevant natural killer cell receptor, with adhesion mediated by the drug alefacept. We show that a model in which all target cell epitopes are mobile and available is inconsistent with the data, suggesting that more complex mechanisms are at work. We hypothesize that the immobile epitope fraction may change with cell adhesion, and we find that such a model is more consistent with the data. We also quantitatively describe the parameter space in which binding occurs. Our results point toward mechanisms relating epitope immobility to cell adhesion and offer insight into the activity of an important class of drugs.Comment: 13 pages, 5 figure

    Quasi-elastic polarization-transfer measurements on the deuteron in anti-parallel kinematics

    Full text link
    We present measurements of the polarization-transfer components in the 2^2H(e,ep)(\vec e,e'\vec p) reaction, covering a previously unexplored kinematic region with large positive (anti-parallel) missing momentum, pmissp_{\rm miss}, up to 220 MeV/c/c, and Q2=0.65Q^2=0.65 (GeV/c)2({\rm GeV}/c)^2. These measurements, performed at the Mainz Microtron (MAMI), were motivated by theoretical calculations which predict small final-state interaction (FSI) effects in these kinematics, making them favorable for searching for medium modifications of bound nucleons in nuclei. We find in this kinematic region that the measured polarization-transfer components PxP_x and PzP_z and their ratio agree with the theoretical calculations, which use free-proton form factors. Using this, we establish upper limits on possible medium effects that modify the bound proton's form factor ratio GE/GMG_E/G_M at the level of a few percent. We also compare the measured polarization-transfer components and their ratio for 2^2H to those of a free (moving) proton. We find that the universal behavior of 2^2H, 4^4He and 12^{12}C in the double ratio (Px/Pz)A(Px/Pz)1H\frac{(P_x/P_z)^A}{(P_x/P_z)^{^1\rm H}} is maintained in the positive missing-momentum region

    Acetate Causes Alcohol Hangover Headache in Rats

    Get PDF
    Background: The mechanism of veisalgia cephalgia or hangover headache is unknown. Despite a lack of mechanistic studies, there are a number of theories positing congeners, dehydration, or the ethanol metabolite acetaldehyde as causes of hangover headache. Methods: We used a chronic headache model to examine how pure ethanol produces increased sensitivity for nociceptive behaviors in normally hydrated rats. Results: Ethanol initially decreased sensitivity to mechanical stimuli on the face (analgesia), followed 4 to 6 hours later by inflammatory pain. Inhibiting alcohol dehydrogenase extended the analgesia whereas inhibiting aldehyde dehydrogenase decreased analgesia. Neither treatment had nociceptive effects. Direct administration of acetate increased nociceptive behaviors suggesting that acetate, not acetaldehyde, accumulation results in hangover-like hypersensitivity in our model. Since adenosine accumulation is a result of acetate formation, we administered an adenosine antagonist that blocked hypersensitivity. Discussion: Our study shows that acetate contributes to hangover headache. These findings provide insight into the mechanism of hangover headache and the mechanism of headache induction

    Activation-Induced Apoptosis of Autoreactive and Alloreactive T Lymphocytes in the Target Organ as a Major Mechanism of Tolerance

    Get PDF
    Normal individuals have mature T lymphocytes that are capable of reacting to self-antigens and can be activated by cross-reacting environmental antigens. The mechanism that maintains immune tolerance and prevents these activated autoreactive T cells from causing autoimmune disease is unclear. We have previously hypothesized that activation-induced apoptosis of previously activated autoreactive T cells in the target organ is a major mechanism for maintaining tolerance. Here I review the current evidence to support this hypothesis. It is proposed that when activated autoreactive T cells enter the target organ, they are reactivated mainly by non-professional antigen-presenting cells (APC) and deleted by activation-induced apoptosis through the Fas (CD95) pathway before producing significant target organ damage. This apoptosis occurs because the reactivated T cells do not receive sufficient costimulation from the non-professional APC to up-regulate their expression of Bcl-2-related anti-apoptotic proteins, which inhibit the CD95 pro-apoptotic pathway. This is in contrast to the situation in peripheral lymphoid organs, where reactivation of T cells by professional APC results in sufficient costimulation-induced up-regulation of Bcl-2-related proteins to inhibit the CD95 pathway and allow T cell proliferation and survival as memory T cells. Activation-induced apoptosis of alloreactive T cells in allografts can similarly account for spontaneous allograft acceptance, as occurs after MHC-mismatched liver transplantation
    corecore