101 research outputs found

    Development of Functional Human NK Cells in an Immunodeficient Mouse Model with the Ability to Provide Protection against Tumor Challenge

    Get PDF
    Studies of human NK cells and their role in tumor suppression have largely been restricted to in vitro experiments which lack the complexity of whole organisms, or mouse models which differ significantly from humans. In this study we showed that, in contrast to C57BL/6 Rag2−/−/γc−/− and NOD/Scid mice, newborn BALB/c Rag2−/−/γc−/− mice can support the development of human NK cells and CD56+ T cells after intrahepatic injection with hematopoietic stem cells. The human CD56+ cells in BALB/c Rag2−/−/γc−/− mice were able to produce IFN-γ in response to human IL-15 and polyI:C. NK cells from reconstituted Rag2−/−/γc−/− mice were also able to kill and inhibit the growth of K562 cells in vitro and were able to produce IFN-γ in response to stimulation with K562 cells. In vivo, reconstituted Rag2−/−/γc−/− mice had higher survival rates after K562 challenge compared to non-reconstituted Rag2−/−/γc−/− mice and were able to control tumor burden in various organs. Reconstituted Rag2−/−/γc−/− mice represent a model in which functional human NK and CD56+ T cells can develop from stem cells and can thus be used to study human disease in a more clinically relevant environment

    Inflammatory monocytes require type I interferon receptor signaling to activate NK cells via IL-18 during a mucosal viral infection

    Get PDF
    The requirement of type I interferon (IFN) for natural killer (NK) cell activation in response to viral infection is known, but the underlying mechanism remains unclear. Here, we demonstrate that type I IFN signaling in inflammatory monocytes, but not in dendritic cells (DCs) or NK cells, is essential for NK cell function in response to a mucosal herpes simplex virus type 2 (HSV-2) infection. Mice deficient in type I IFN signaling, Ifnar(-/-) and Irf9(-/-) mice, had significantly lower levels of inflammatory monocytes, were deficient in IL-18 production, and lacked NK cell-derived IFN-gamma. Depletion of inflammatory monocytes, but not DCs or other myeloid cells, resulted in lower levels of IL-18 and a complete abrogation of NK cell function in HSV-2 infection. Moreover, this resulted in higher susceptibility to HSV-2 infection. Although Il18(-/-) mice had normal levels of inflammatory monocytes, their NK cells were unresponsive to HSV-2 challenge. This study highlights the importance of type I IFN signaling in inflammatory monocytes and the induction of the early innate antiviral response

    Interferon-gamma alters the phagocytic activity of the mouse trophoblast

    Get PDF
    Interferon-gamma (IFN-gamma) mediates diverse functions in bone marrow-derived phagocytes, including phagocytosis and microbe destruction. This cytokine has also been detected at implantation sites under both physiological and pathological conditions in many different species. At these particular sites, the outermost embryonic cell layer in close contact with the maternal tissues, the trophoblast exhibits intense phagocytic activity. To determine whether IFN-gamma affects phagocytosis of mouse-trophoblast cells, ectoplacental cone-derived trophoblast was cultured and evaluated for erythrophagocytosis. Phagocytic activity was monitored ultrastructurally and expressed as percentage of phagocytic trophoblast in total trophoblast cells. Conditioned medium from concanavalin-A-stimulated spleen cells significantly enhanced trophoblast phagocytosis. This effect was blocked by pre-incubation with an anti-IFN-gamma neutralizing antibody. Introduction of mouse recombinant IFN-gamma (mrIFN-gamma) to cultures did not increase cell death, but augmented the percentage of phagocytic cells in a dose-dependent manner. Ectoplacental cones from mice deficient for IFN-gamma receptor alpha-chain showed a significant decrease of the phagocytosis, even under mrIFN-gamma stimulation, suggesting that IFN-gamma-induced phagocytosis are receptor-mediated. Reverse transcriptase-PCR analyses confirmed the presence of mRNA for IFN-gamma receptor alpha and beta-chains in trophoblast cells and detected a significant increase in the mRNA levels of IFN-gamma receptor beta-chain, mainly, when cultured cells were exposed to IFN-gamma. Immunohistochemistry and Western blot analyses also revealed protein expression of the IFN-gamma receptor alpha-chain. These results suggest that IFN-gamma may participate in the phagocytic activation of the mouse trophoblast, albeit the exact mechanism was not hereby elucidated. Protective and/or nutritional fetal benefit may result from this physiological response. In addition, our data also shed some light on the understanding of trophoblast tolerance to inflammatory/immune cytokines during normal gestation

    TOXICOLOGICAL AND PHARMACOLOGICAL ASSESSMENT OF GOLD NANORODS IN NORMAL RATS

    Get PDF
    Objective: assessment of acute, subchronic and chronic toxicity of pegylated gold nanorods (PEG-gold NRs) in Wistar rats of both sex in three routes of administration {intravenous (IV), intramuscular (IM) and subcutaneous (SC)}.Methods: in the acute toxicity study; PEG-gold NRs were injected once by three different routes, blood and tissue samples were collected after 14 d. In the subchronic and chronic studies; PEG-gold NRs were injected via three different routes, at 0.225, 0.45 and 0.9 mg/kg, once daily for 5 consecutive days, followed by a 23-day recovery period, for three and six months in the subchronic and chronic toxicity studies, respectively. Hematology, urinalysis, biochemical and histopathological examinations were conducted at the end of each study.Results: acute toxicity showed a significant decrease in serum triglycerides and cholesterol levels after single IV, IM and SC injection of PEG-gold NRs, while serum creatinine was significantly increased after IV and IM injection. Subchronic results revealed a significant decrease in serum triglycerides and cholesterol levels. The chronic study showed a significant decrease in serum triglycerides, sodium levels, total leukocytes count and significant increase in serum creatinine after IV injection. IM injection resulted in significant decrease in serum alkaline phosphatase, triglycerides, cholesterol, sodium levels and total leukocytes count. SC injection resulted in significant decrease in serum triglycerides, glucose, red blood cell count with increased creatinine and hematocrit.Conclusion: PEG-gold NRs at the three examined doses is apparently safe since no serious signs of toxicity were detected. IM and SC routes of injection were irritating, so we recommend the IV route.Â

    Genital HSV-2 Infection Induces Short-Term NK Cell Memory

    Get PDF
    NK cells are known as innate immune cells that lack immunological memory. Recently, it has been shown that NK cells remember encounters with chemical haptens that induce contact hypersensitivity and cytomegalovirus infection. Here, we show the existence of NK cell memory following HSV-2 infection. Stimulation with HSV-2 Ags led to higher IFNγ production in NK cells that were exposed 30 days previously to HSV-2, compared to NK cells from naïve mice. More importantly, this increased production of IFNγ in NK cells was independent of B- and T- lymphocytes and specific for the HSV-2 Ags. We also showed that previously exposed NK cells in a B- and T-lymphocyte free environment mediate protection against HSV-2 infection and they are necessary for the protection of mice against HSV-2 infection. Collectively, NK cells remember prior HSV-2 encounters independent of B- and T- lymphocytes leading to protection against HSV-2 mediated morbidity and mortality upon re-exposure

    AHR signaling is induced by infection with coronaviruses

    Get PDF
    Coronavirus infection in humans is usually associated to respiratory tract illnesses, ranging in severity from mild to life-threatening respiratory failure. The aryl hydrocarbon receptor (AHR) was recently identified as a host factor for Zika and dengue viruses; AHR antagonists boost antiviral immunity, decrease viral titers and ameliorate Zika-induced pathology in vivo. Here we report that AHR is activated by infection with different coronaviruses, potentially impacting antiviral immunity and lung epithelial cells. Indeed, the analysis of single-cell RNA-seq from lung tissue detected increased expression of AHR and AHR transcriptional targets, suggesting AHR signaling activation in SARS-CoV-2-infected epithelial cells from COVID-19 patients. Moreover, we detected an association between AHR expression and viral load in SARS-CoV-2 infected patients. Finally, we found that the pharmacological inhibition of AHR suppressed the replication in vitro of one of the causative agents of the common cold, HCoV-229E, and the causative agent of the COVID-19 pandemic, SARS-CoV-2. Taken together, these findings suggest that AHR activation is a common strategy used by coronaviruses to evade antiviral immunity and promote viral replication, which may also contribute to lung pathology. Future studies should further evaluate the potential of AHR as a target for host-directed antiviral therapy.Fil: Giovannoni, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Harvard Medical School; Estados UnidosFil: Li, Zhaorong. Harvard Medical School; Estados UnidosFil: Remes Lenicov, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Dávola, María E.. McMaster University; CanadáFil: Elizalde, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Paletta, Ana Luz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Ashkar, Ali A.. McMaster University; CanadáFil: Mossman, Karen L.. McMaster University; CanadáFil: Dugour, Andrea Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Figueroa, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Barquero, Andrea Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Laboratorio de Virología; ArgentinaFil: Ceballos, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Garcia, Cybele. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Quintana, Francisco Javier. Broad Institute; Estados Unidos. Harvard Medical School; Estados Unido

    FimH Adhesin of Type 1 Fimbriae Is a Potent Inducer of Innate Antimicrobial Responses Which Requires TLR4 and Type 1 Interferon Signalling

    Get PDF
    Components of bacteria have been shown to induce innate antiviral immunity via Toll-like receptors (TLRs). We have recently shown that FimH, the adhesin portion of type 1 fimbria, can induce the innate immune system via TLR4. Here we report that FimH induces potent in vitro and in vivo innate antimicrobial responses. FimH induced an innate antiviral state in murine macrophage and primary MEFs which was correlated with IFN-β production. Moreover, FimH induced the innate antiviral responses in cells from wild type, but not from MyD88−/−, Trif−/−, IFN−α/βR−/− or IRF3−/− mice. Vaginal delivery of FimH, but not LPS, completely protected wild type, but not MyD88−/−, IFN-α/βR−/−, IRF3−/− or TLR4−/− mice from subsequent genital HSV-2 challenge. The FimH-induced innate antiviral immunity correlated with the production of IFN-β, but not IFN-α or IFN-γ. To examine whether FimH plays a role in innate immune induction in the context of a natural infection, the innate immune responses to wild type uropathogenic E. coli (UPEC) and a FimH null mutant were examined in the urinary tract of C57Bl/6 (B6) mice and TLR4-deficient mice. While UPEC expressing FimH induced a robust polymorphonuclear response in B6, but not TLR4−/− mice, mutant bacteria lacking FimH did not. In addition, the presence of TLR4 was essential for innate control of and protection against UPEC. Our results demonstrate that FimH is a potent inducer of innate antimicrobial responses and signals differently, from that of LPS, via TLR4 at mucosal surfaces. Our studies suggest that FimH can potentially be used as an innate microbicide against mucosal pathogens

    S6K-STING interaction regulates cytosolic DNA-mediated activation of the transcription factor IRF3

    Get PDF
    Cytosolic DNA-mediated activation of the transcription factor IRF3 is a key event in host antiviral responses. Here we found that infection with DNA viruses induced interaction of the metabolic checkpoint kinase mTOR downstream effector and kinase S6K1 and the signaling adaptor STING in a manner dependent on the DNA sensor cGAS. We further demonstrated that the kinase domain, but not the kinase function, of S6K1 was required for the S6K1-STING interaction and that the TBK1 critically promoted this process. The formation of a tripartite S6K1-STING-TBK1 complex was necessary for the activation of IRF3, and disruption of this signaling axis impaired the early-phase expression of IRF3 target genes and the induction of T cell responses and mucosal antiviral immunity. Thus, our results have uncovered a fundamental regulatory mechanism for the activation of IRF3 in the cytosolic DNA pathway

    Resveratrol Prevents Endothelial Cells Injury in High-Dose Interleukin-2 Therapy against Melanoma

    Get PDF
    Immunotherapy with high-dose interleukin-2 (HDIL-2) is an effective treatment for patients with metastatic melanoma and renal cell carcinoma. However, it is accompanied by severe toxicity involving endothelial cell injury and induction of vascular leak syndrome (VLS). In this study, we found that resveratrol, a plant polyphenol with anti-inflammatory and anti-cancer properties, was able to prevent the endothelial cell injury and inhibit the development of VLS while improving the efficacy of HDIL-2 therapy in the killing of metastasized melanoma. Specifically, C57BL/6 mice were injected with B16F10 cells followed by resveratrol by gavage the next day and continued treatment with resveratrol once a day. On day 9, mice received HDIL-2. On day 12, mice were evaluated for VLS and tumor metastasis. We found that resveratrol significantly inhibited the development of VLS in lung and liver by protecting endothelial cell integrity and preventing endothelial cells from undergoing apoptosis. The metastasis and growth of the tumor in lung were significantly inhibited by HDIL-2 and HDIL-2 + resveratrol treatment. Notably, HDIL-2 + resveratrol co-treatment was more effective in inhibiting tumor metastasis and growth than HDIL-2 treatment alone. We also analyzed the immune status of Gr-1+CD11b+ myeloid-derived suppressor cells (MDSC) and FoxP3+CD4+ regulatory T cells (Treg). We found that resveratrol induced expansion and suppressive function of MDSC which inhibited the development of VLS after adoptive transfer. However, resveratrol suppressed the HDIL-2-induced expansion of Treg cells. We also found that resveratrol enhanced the susceptibility of melanoma to the cytotoxicity of IL-2-activated killer cells, and induced the expression of the tumor suppressor gene FoxO1. Our results suggested the potential use of resveratrol in HDIL-2 treatment against melanoma. We also demonstrated, for the first time, that MDSC is the dominant suppressor cell than regulatory T cell in the development of VLS
    • …
    corecore