2,946 research outputs found

    Static and dynamic properties of crystalline phases of two-dimensional electrons in a strong magnetic field

    Full text link
    We study the cohesive energy and elastic properties as well as normal modes of the Wigner and bubble crystals of the two-dimensional electron system (2DES) in higher Landau levels. Using a simple Hartree-Fock approach, we show that the shear moduli (c66c_{66}'s) of these electronic crystals show a non-monotonic behavior as a function of the partial filling factor ν\nu^* at any given Landau level, with c66c_{66} increasing for small values of ν\nu^*, before reaching a maximum at some intermediate filling factor νm\nu^*_m, and monotonically decreasing for ν>νm\nu^*>\nu^*_m. We also go beyond previous treatments, and study how the phase diagram and elastic properties of electron solids are changed by the effects of screening by electrons in lower Landau levels, and by a finite thickness of the experimental sample. The implications of these results on microwave resonance experiments are briefly discussed.Comment: Discussion updated - 16 pages, 10 figures; version accepted for publication in Phys. Rev.

    Hall effect in strongly correlated low dimensional systems

    Full text link
    We investigate the Hall effect in a quasi one-dimensional system made of weakly coupled Luttinger Liquids at half filling. Using a memory function approach, we compute the Hall coefficient as a function of temperature and frequency in the presence of umklapp scattering. We find a power-law correction to the free-fermion value (band value), with an exponent depending on the Luttinger parameter KρK_{\rho}. At high enough temperature or frequency the Hall coefficient approaches the band value.Comment: 7 pages, 3 figure

    Reply to the comment of Chudnovsky&Garanin on "Spin relaxation in Mn12-acetate"

    Full text link
    Reply to the comment of E.M. Chudnovsky and D.A. Garanin on Europhys. Lett. 46, 692 (1999).Comment: 2 pages, Latex (europhys.sty

    Quasi-Adiabatic Continuation in Gapped Spin and Fermion Systems: Goldstone's Theorem and Flux Periodicity

    Full text link
    We apply the technique of quasi-adiabatic continuation to study systems with continuous symmetries. We first derive a general form of Goldstone's theorem applicable to gapped nonrelativistic systems with continuous symmetries. We then show that for a fermionic system with a spin gap, it is possible to insert π\pi-flux into a cylinder with only exponentially small change in the energy of the system, a scenario which covers several physically interesting cases such as an s-wave superconductor or a resonating valence bond state.Comment: 19 pages, 2 figures, final version in press at JSTA

    Duality and the vibrational modes of a Cooper-pair Wigner crystal

    Full text link
    When quantum fluctuations in the phase of the superconducting order parameter destroy the off-diagonal long range order, duality arguments predict the formation of a Cooper pair crystal. This effect is thought to be responsible for the static checkerboard patterns observed recently in various underdoped cuprate superconductors by means of scanning tunneling spectroscopy. Breaking of the translational symmetry in such a Cooper pair Wigner crystal may, under certain conditions, lead to the emergence of low lying transverse vibrational modes which could then contribute to thermodynamic and transport properties at low temperatures. We investigate these vibrational modes using a continuum version of the standard vortex-boson duality, calculate the speed of sound in the Cooper pair Wigner crystal and deduce the associated specific heat and thermal conductivity. We then suggest that these modes could be responsible for the mysterious bosonic contribution to the thermal conductivity recently observed in strongly underdoped ultraclean single crystals of YBCO tuned across the superconductor-insulator transition.Comment: 14 pages; 3 figures; corrected the sample size value; version 3 to appear in PR

    Geometric origin of excess low-frequency vibrational modes in amorphous solids

    Full text link
    Glasses have a large excess of low-frequency vibrational modes in comparison with crystalline solids. We show that such a feature is a necessary consequence of the geometry generic to weakly connected solids. In particular, we analyze the density of states of a recently simulated system, comprised of weakly compressed spheres at zero temperature. We account for the observed a) constancy of the density of modes with frequency, b) appearance of a low-frequency cutoff, and c) power-law increase of this cutoff with compression. We predict a length scale below which vibrations are very different from those of a continuous elastic body.Comment: 4 pages, 2 figures. Argument rewritten, identical result

    A joint time-dependent density-functional theory for excited states of electronic systems in solution

    Full text link
    We present a novel joint time-dependent density-functional theory for the description of solute-solvent systems in time-dependent external potentials. Starting with the exact quantum-mechanical action functional for both electrons and nuclei, we systematically eliminate solvent degrees of freedom and thus arrive at coarse-grained action functionals which retain the highly accurate \emph{ab initio} description for the solute and are, in principle, exact. This procedure allows us to examine approximations underlying popular embedding theories for excited states. Finally, we introduce a novel approximate action functional for the solute-water system and compute the solvato-chromic shift of the lowest singlet excited state of formaldehyde in aqueous solution, which is in good agreement with experimental findings.Comment: 11 page

    Anisotropic states of two-dimensional electrons in high magnetic fields

    Full text link
    We study the collective states formed by two-dimensional electrons in Landau levels of index n2n\ge 2 near half-filling. By numerically solving the self-consistent Hartree-Fock (HF) equations for a set of oblique two-dimensional lattices, we find that the stripe state is an anisotropic Wigner crystal (AWC), and determine its precise structure for varying values of the filling factor. Calculating the elastic energy, we find that the shear modulus of the AWC is small but finite (nonzero) within the HF approximation. This implies, in particular, that the long-wavelength magnetophonon mode in the stripe state vanishes like q3/2q^{3/2} as in an ordinary Wigner crystal, and not like q5/2q^{5/2} as was found in previous studies where the energy of shear deformations was neglected.Comment: minor corrections; 5 pages, 4 figures; version to be published in Physical Review Letter

    Berry phase correction to electron density of states in solids

    Full text link
    Liouville's theorem on the conservation of phase space volume is violated by Berry phase in the semiclassical dynamics of Bloch electrons. This leads to a modification of the phase space density of states, whose significance is discussed in a number of examples: field modification of the Fermi-sea volume, connection to the anomalous Hall effect, and a general formula for orbital magnetization. The effective quantum mechanics of Bloch electrons is also sketched, where the modified density of states plays an essential role.Comment: Minor revision. Journal info updat
    corecore