370 research outputs found

    The origin of defects induced in ultra-pure germanium by Electron Beam Deposition

    Get PDF
    The creation of point defects in the crystal lattices of various semiconductors by subthreshold events has been reported on by a number of groups. These observations have been made in great detail using sensitive electrical techniques but there is still much that needs to be clarified. Experiments using Ge and Si were performed that demonstrate that energetic particles, the products of collisions in the electron beam, were responsible for the majority of electron-beam deposition (EBD) induced defects in a two-step energy transfer process. Lowering the number of collisions of these energetic particles with the semiconductor during metal deposition was accomplished using a combination of static shields and superior vacuum resulting in devices with defect concentrations lower than 1011  10^{11}\,cm−3^{-3}, the measurement limit of our deep level transient spectroscopy (DLTS) system. High energy electrons and photons that samples are typically exposed to were not influenced by the shields as most of these particles originate at the metal target thus eliminating these particles as possible damage causing agents. It remains unclear how packets of energy that can sometimes be as small of 2eV travel up to a μ\mum into the material while still retaining enough energy, that is, in the order of 1eV, to cause changes in the crystal. The manipulation of this defect causing phenomenon may hold the key to developing defect free material for future applications.Comment: 18 pages, 9 figure

    Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients

    Get PDF
    The periplasmic chaperone SurA plays a key role in outer membrane protein (OMP) biogenesis. E. coli SurA comprises a core domain and two peptidylprolyl isomerase domains (P1 and P2), but its mechanisms of client binding and chaperone function have remained unclear. Here, we use chemical cross-linking, hydrogen-deuterium exchange mass spectrometry, single-molecule FRET and molecular dynamics simulations to map the client binding site(s) on SurA and interrogate the role of conformational dynamics in OMP recognition. We demonstrate that SurA samples an array of conformations in solution in which P2 primarily lies closer to the core/P1 domains than suggested in the SurA crystal structure. OMP binding sites are located primarily in the core domain, and OMP binding results in conformational changes between the core/P1 domains. Together, the results suggest that unfolded OMP substrates bind in a cradle formed between the SurA domains, with structural flexibility between domains assisting OMP recognition, binding and release

    Determining factors of thermoelectric properties of semiconductor nanowires

    Get PDF
    It is widely accepted that low dimensionality of semiconductor heterostructures and nanostructures can significantly improve their thermoelectric efficiency. However, what is less well understood is the precise role of electronic and lattice transport coefficients in the improvement. We differentiate and analyze the electronic and lattice contributions to the enhancement by using a nearly parameter-free theory of the thermoelectric properties of semiconductor nanowires. By combining molecular dynamics, density functional theory, and Boltzmann transport theory methods, we provide a complete picture for the competing factors of thermoelectric figure of merit. As an example, we study the thermoelectric properties of ZnO and Si nanowires. We find that the figure of merit can be increased as much as 30 times in 8-Å-diameter ZnO nanowires and 20 times in 12-Å-diameter Si nanowires, compared with the bulk. Decoupling of thermoelectric contributions reveals that the reduction of lattice thermal conductivity is the predominant factor in the improvement of thermoelectric properties in nanowires. While the lattice contribution to the efficiency enhancement consistently becomes larger with decreasing size of nanowires, the electronic contribution is relatively small in ZnO and disadvantageous in Si

    Semi-Holographic Fermi Liquids

    Full text link
    We show that the universal physics of recent holographic non-Fermi liquid models is captured by a semi-holographic description, in which a dynamical boundary field is coupled to a strongly coupled conformal sector having a gravity dual. This allows various generalizations, such as a dynamical exponent and lattice and impurity effects. We examine possible relevant deformations, including multi-trace terms and spin-orbit effects. We discuss the matching onto the UV theory of the earlier work, and an alternate description in which the boundary field is integrated out.Comment: 26 pages, 4 figures; v2: typos corrected and report number adde

    Primary care medication safety surveillance with integrated primary and secondary care electronic health records: a cross-sectional study

    Get PDF
    Introduction: The extent of preventable medication-related hospital admissions and medication-related issues in primary care is significant enough to justify developing decision support systems for medication safety surveillance. The prerequisite for such systems is defining a relevant set of medication safety-related indicators and understanding the influence of both patient and general practice characteristics on medication prescribing and monitoring. Objective: The aim of the study was to investigate the feasibility of linked primary and secondary care electronic health record data for surveillance of medication safety, examining not only prescribing but also monitoring, and associations with patient- and general practice-level characteristics. Methods: A cross-sectional study was conducted using linked records of patients served by one hospital and over 50 general practices in Salford, UK. Statistical analysis consisted of mixed-effects logistic models, relating prescribing safety indicators to potential determinants. Results: The overall prevalence (proportion of patients with at least one medication safety hazard) was 5.45 % for prescribing indicators and 7.65 % for monitoring indicators. Older patients and those on multiple medications were at higher risk of prescribing hazards, but at lower risk of missed monitoring. The odds of missed monitoring among all patients were 25 % less for males, 50 % less for patients in practices that provide general practitioner training, and threefold higher in practices serving the most deprived compared with the least deprived areas. Practices with more prescribing hazards did not tend to show more monitoring issues. Conclusions:Systematic collection, collation, and analysis of linked primary and secondary care records produce plausible and useful information about medication safety for a health system. Medication safety surveillance systems should pay close attention to patient age and polypharmacy with respect to both prescribing and monitoring failures; treat prescribing and monitoring as different statistical processes, rather than a combined measure of prescribing safety; and audit the socio-economic equity of missed monitoring

    Using molecular data for epidemiological inference: assessing the prevalence of Trypanosoma brucei rhodesiense in Tsetse in Serengeti, Tanzania

    Get PDF
    Background: Measuring the prevalence of transmissible Trypanosoma brucei rhodesiense in tsetse populations is essential for understanding transmission dynamics, assessing human disease risk and monitoring spatio-temporal trends and the impact of control interventions. Although an important epidemiological variable, identifying flies which carry transmissible infections is difficult, with challenges including low prevalence, presence of other trypanosome species in the same fly, and concurrent detection of immature non-transmissible infections. Diagnostic tests to measure the prevalence of T. b. rhodesiense in tsetse are applied and interpreted inconsistently, and discrepancies between studies suggest this value is not consistently estimated even to within an order of magnitude. Methodology/Principal Findings: Three approaches were used to estimate the prevalence of transmissible Trypanosoma brucei s.l. and T. b. rhodesiense in Glossina swynnertoni and G. pallidipes in Serengeti National Park, Tanzania: (i) dissection/microscopy; (ii) PCR on infected tsetse midguts; and (iii) inference from a mathematical model. Using dissection/microscopy the prevalence of transmissible T. brucei s.l. was 0% (95% CI 0–0.085) for G. swynnertoni and 0% (0–0.18) G. pallidipes; using PCR the prevalence of transmissible T. b. rhodesiense was 0.010% (0–0.054) and 0.0089% (0–0.059) respectively, and by model inference 0.0064% and 0.00085% respectively. Conclusions/Significance: The zero prevalence result by dissection/microscopy (likely really greater than zero given the results of other approaches) is not unusual by this technique, often ascribed to poor sensitivity. The application of additional techniques confirmed the very low prevalence of T. brucei suggesting the zero prevalence result was attributable to insufficient sample size (despite examination of 6000 tsetse). Given the prohibitively high sample sizes required to obtain meaningful results by dissection/microscopy, PCR-based approaches offer the current best option for assessing trypanosome prevalence in tsetse but inconsistencies in relating PCR results to transmissibility highlight the need for a consensus approach to generate meaningful and comparable data

    Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor-β1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Micro-computed tomography (micro-CT) is a novel tool for monitoring acute and chronic disease states in small laboratory animals. Its value for assessing progressive lung fibrosis in mice has not been reported so far. Here we examined the importance of in vivo micro-CT as non-invasive tool to assess progression of pulmonary fibrosis in mice over time.</p> <p>Methods</p> <p>Pulmonary fibrosis was induced in mice by intratracheal delivery of an adenoviral gene vector encoding biologically active TGF-ß1 (AdTGF-ß1). Respiratory gated and ungated micro-CT scans were performed at 1, 2, 3, and 4 weeks post pulmonary adenoviral gene or control vector delivery, and were then correlated with respective histopathology-based Ashcroft scoring of pulmonary fibrosis in mice. Visual assessment of image quality and consolidation was performed by 3 observers and a semi-automated quantification algorithm was applied to quantify aerated pulmonary volume as an inverse surrogate marker for pulmonary fibrosis.</p> <p>Results</p> <p>We found a significant correlation between classical Ashcroft scoring and micro-CT assessment using both visual assessment and the semi-automated quantification algorithm. Pulmonary fibrosis could be clearly detected in micro-CT, image quality values were higher for respiratory gated exams, although differences were not significant. For assessment of fibrosis no significant difference between respiratory gated and ungated exams was observed.</p> <p>Conclusions</p> <p>Together, we show that micro-CT is a powerful tool to assess pulmonary fibrosis in mice, using both visual assessment and semi-automated quantification algorithms. These data may be important in view of pre-clinical pharmacologic interventions for the treatment of lung fibrosis in small laboratory animals.</p

    Evolution of cooperation in stochastic games

    Get PDF
    Social dilemmas occur when incentives for individuals are misaligned with group interests 1-7 . According to the 'tragedy of the commons', these misalignments can lead to overexploitation and collapse of public resources. The resulting behaviours can be analysed with the tools of game theory 8 . The theory of direct reciprocity 9-15 suggests that repeated interactions can alleviate such dilemmas, but previous work has assumed that the public resource remains constant over time. Here we introduce the idea that the public resource is instead changeable and depends on the strategic choices of individuals. An intuitive scenario is that cooperation increases the public resource, whereas defection decreases it. Thus, cooperation allows the possibility of playing a more valuable game with higher payoffs, whereas defection leads to a less valuable game. We analyse this idea using the theory of stochastic games 16-19 and evolutionary game theory. We find that the dependence of the public resource on previous interactions can greatly enhance the propensity for cooperation. For these results, the interaction between reciprocity and payoff feedback is crucial: neither repeated interactions in a constant environment nor single interactions in a changing environment yield similar cooperation rates. Our framework shows which feedbacks between exploitation and environment - either naturally occurring or designed - help to overcome social dilemmas

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∟\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit
    • …
    corecore