3,680 research outputs found

    Impact of Electron-Phonon Coupling on Near-Field Optical Spectra

    Full text link
    The finite momentum transfer (q\boldsymbol{q}) longitudinal optical response σL(q,ω)\sigma^L(\boldsymbol{q},\omega) of graphene has a peak at an energy ω=vFq\omega=\hbar v_F q. This corresponds directly to a quasiparticle peak in the spectral density at momentum relative to the Fermi momentum kFqk_F -q. Inclusion of coupling to a phonon mode at ωE\omega_E results, for ω<ωE\omega<|\omega_E|, in a constant electron-phonon renormalization of the bare bands by a mass enhancement factor (1+λ)(1+\lambda) and this is followed by a phonon kink at ωE\omega_E where additional broadening begins. Here we study the corresponding changes in the optical quasiparticle peaks which we find to continue to directly track the renormalized quasiparticle energies until qq is large enough that the optical transitions begin to sample the phonon kink region of the dispersion curves where linearity in momentum is lost in the renormalized Dirac Fermion dispersion curves and the correspondence to a single quasiparticle energy is lost. Nevertheless there remains in σL(q,ω)\sigma^L(\boldsymbol{q},\omega) features analogous to the phonon kinks of the dispersion curves which are observable through variation of qq and ω\omega.Comment: 6 pages, 5 figure

    Reclaiming human machine nature

    Get PDF
    Extending and modifying his domain of life by artifact production is one of the main characteristics of humankind. From the first hominid, who used a wood stick or a stone for extending his upper limbs and augmenting his gesture strength, to current systems engineers who used technologies for augmenting human cognition, perception and action, extending human body capabilities remains a big issue. From more than fifty years cybernetics, computer and cognitive sciences have imposed only one reductionist model of human machine systems: cognitive systems. Inspired by philosophy, behaviorist psychology and the information treatment metaphor, the cognitive system paradigm requires a function view and a functional analysis in human systems design process. According that design approach, human have been reduced to his metaphysical and functional properties in a new dualism. Human body requirements have been left to physical ergonomics or "physiology". With multidisciplinary convergence, the issues of "human-machine" systems and "human artifacts" evolve. The loss of biological and social boundaries between human organisms and interactive and informational physical artifact questions the current engineering methods and ergonomic design of cognitive systems. New developpment of human machine systems for intensive care, human space activities or bio-engineering sytems requires grounding human systems design on a renewed epistemological framework for future human systems model and evidence based "bio-engineering". In that context, reclaiming human factors, augmented human and human machine nature is a necessityComment: Published in HCI International 2014, Heraklion : Greece (2014

    An analytical and experimental assessment of flexible road ironwork support structures

    Get PDF
    This paper describes work undertaken to investigate the mechanical performance of road ironwork installations in highways, concentrating on the chamber construction. The principal aim was to provide the background research which would allow improved designs to be developed to reduce the incidence of failures through improvements to the structural continuity between the installation and the surrounding pavement. In doing this, recycled polymeric construction materials (Jig Brix) were studied with a view to including them in future designs and specifications. This paper concentrates on the Finite Element (FE) analysis of traditional (masonry) and flexible road ironwork structures incorporating Jig Brix. The global and local buckling capacity of the Jig Brix elements was investigated and results compared well with laboratory measurements. FE models have also been developed for full-scale traditional (masonry) and flexible installations in a surrounding flexible (asphalt) pavement structure. Predictions of response to wheel loading were compared with full-scale laboratory measurements. Good agreement was achieved with the traditional (masonry) construction but poorer agreement for the flexible construction. Predictions from the FE model indicated that the use of flexible elements significantly reduces the tensile horizontal strain on the surface of the surrounding asphaltic material which is likely to reduce the incidence of surface cracking

    Mid-infrared Identification of 6 cm Radio Source Counterparts in the Extended Groth Strip

    Get PDF
    A new 6-cm survey of almost 0.6 square degrees to a limit of 0.55-mJy/beam (10-sigma) finds 37 isolated radio sources and 7 radio source pairs (not necessarily physical companions). IRAC counterparts are identified for at least 92% of the radio sources within the area of deep IRAC coverage, which includes 31 isolated sources and 6 pairs. This contrasts with an identification rate of <74% to R<23.95 in visible light. Eight of the IRAC galaxies have power law spectral energy distributions, implying that the mid-infrared emission comes from a powerful AGN. The remaining 26 IRAC galaxies show stellar emission in the mid-infrared, probably in most of these galaxies because the stellar emission is bright enough to outshine an underlying AGN. The infrared colors suggest that the majority of these galaxies are bulge-dominated and have redshifts between approximately 0.5 and 1.0. Visible spectra from the DEEP2 redshift survey, available for 11 galaxies, are consistent with this suggestion. The IRAC galaxies fall into two distinct groups in a color-magnitude diagram, one group (the "stripe") includes all the AGN. The other group (the "blue clump") has blue 3.6 to 8 micron colors and a small range of 8 micron magnitudes. This separation should be useful in classifying galaxies found in other radio surveys.Comment: Accepted by A

    The AGN Luminosity Fraction in Merging Galaxies

    Get PDF
    Galaxy mergers are key events in galaxy evolution, often causing massive starbursts and fueling active galactic nuclei (AGN). In these highly dynamic systems, it is not yet precisely known how much starbursts and AGN respectively contribute to the total luminosity, at what interaction stages they occur, and how long they persist. Here we estimate the fraction of the bolometric infrared (IR) luminosity that can be attributed to AGN by measuring and modeling the full ultraviolet to far-infrared spectral energy distributions (SEDs) in up to 33 broad bands for 24 merging galaxies with the Code for Investigating Galaxy Emission. In addition to a sample of 12 confirmed AGN in late-stage mergers, found in the InfraredInfrared ArrayArray SatelliteSatellite Revised Bright Galaxy Sample or Faint Source Catalog, our sample includes a comparison sample of 12 galaxy mergers from the SpitzerSpitzer Interacting Galaxies Survey, mostly early-stage. We perform identical SED modeling of simulated mergers to validate our methods, and we supplement the SED data with mid-IR spectra of diagnostic lines obtained with SpitzerSpitzer InfraRed Spectrograph. The estimated AGN contributions to the IR luminosities vary from system to system from 0% up to 91% but are significantly greater in the later-stage, more luminous mergers, consistent with what is known about galaxy evolution and AGN triggering.Comment: 26 pages, 10 figure

    Quantifying Self-Organization with Optimal Predictors

    Full text link
    Despite broad interest in self-organizing systems, there are few quantitative, experimentally-applicable criteria for self-organization. The existing criteria all give counter-intuitive results for important cases. In this Letter, we propose a new criterion, namely an internally-generated increase in the statistical complexity, the amount of information required for optimal prediction of the system's dynamics. We precisely define this complexity for spatially-extended dynamical systems, using the probabilistic ideas of mutual information and minimal sufficient statistics. This leads to a general method for predicting such systems, and a simple algorithm for estimating statistical complexity. The results of applying this algorithm to a class of models of excitable media (cyclic cellular automata) strongly support our proposal.Comment: Four pages, two color figure

    Dynamic ductile to brittle transition in a one-dimensional model of viscoplasticity

    Full text link
    We study two closely related, nonlinear models of a viscoplastic solid. These models capture essential features of plasticity over a wide range of strain rates and applied stresses. They exhibit inelastic strain relaxation and steady flow above a well defined yield stress. In this paper, we describe a first step in exploring the implications of these models for theories of fracture and related phenomena. We consider a one dimensional problem of decohesion from a substrate of a membrane that obeys the viscoplastic constitutive equations that we have constructed. We find that, quite generally, when the yield stress becomes smaller than some threshold value, the energy required for steady decohesion becomes a non-monotonic function of the decohesion speed. As a consequence, steady state decohesion at certain speeds becomes unstable. We believe that these results are relevant to understanding the ductile to brittle transition as well as fracture stability.Comment: 10 pages, REVTeX, 12 postscript figure

    Star formation in z>1 3CR host galaxies as seen by Herschel

    Get PDF
    We present Herschel (PACS and SPIRE) far-infrared (FIR) photometry of a complete sample of z>1 3CR sources, from the Herschel GT project The Herschel Legacy of distant radio-loud AGN (PI: Barthel). Combining these with existing Spitzer photometric data, we perform an infrared (IR) spectral energy distribution (SED) analysis of these landmark objects in extragalactic research to study the star formation in the hosts of some of the brightest active galactic nuclei (AGN) known at any epoch. Accounting for the contribution from an AGN-powered warm dust component to the IR SED, about 40% of our objects undergo episodes of prodigious, ULIRG-strength star formation, with rates of hundreds of solar masses per year, coeval with the growth of the central supermassive black hole. Median SEDs imply that the quasar and radio galaxy hosts have similar FIR properties, in agreement with the orientation-based unification for radio-loud AGN. The star-forming properties of the AGN hosts are similar to those of the general population of equally massive non-AGN galaxies at comparable redshifts, thus there is no strong evidence of universal quenching of star formation (negative feedback) within this sample. Massive galaxies at high redshift may be forming stars prodigiously, regardless of whether their supermassive black holes are accreting or not.Comment: 30 pages, 13 figures, 4 tables. Accepted for publication in A&

    Weighing the Milky Way

    Full text link
    We describe an experiment to measure the mass of the Milky Way galaxy. The experiment is based on calculated light travel times along orthogonal directions in the Schwarzschild metric of the Galactic center. We show that the difference is proportional to the Galactic mass. We apply the result to light travel times in a 10cm Michelson type interferometer located on Earth. The mass of the Galactic center is shown to contribute 10^-6 to the flat space component of the metric. An experiment is proposed to measure the effect.Comment: 10 pages, 1 figur
    corecore