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Abstract 

This paper describes work undertaken to investigate the mechanical performance of 

road ironwork installations in highways, concentrating on the chamber construction.  

The principal aim was to provide the background research which would allow 

improved designs to be developed to reduce the incidence of failures through 

improvements to the structural continuity between the installation and the surrounding 

pavement.  In doing this, recycled polymeric construction materials (Jig Brix) were 

studied with a view to including them in future designs and specifications.  This paper 

concentrates on the Finite Element (FE) analysis of traditional (masonry) and flexible 

road ironwork structures incorporating Jig Brix.  The global and local buckling 

capacity of the Jig Brix elements was investigated and results compared well with 

laboratory measurements.  FE models have also been developed for full-scale 

traditional (masonry) and flexible installations in a surrounding flexible (asphalt) 

pavement structure.  Predictions of response to wheel loading were compared with 

full-scale laboratory measurements.  Good agreement was achieved with the 

traditional (masonry) construction but poorer agreement for the flexible construction.  

Predictions from the FE model indicated that the use of flexible elements significantly 

reduces the tensile horizontal strain on the surface of the surrounding asphaltic 

material which is likely to reduce the incidence of surface cracking. 

 

Key Words: Road Ironwork, Pavement, Finite element, Buckling, Cracking 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham Trent Institutional Repository (IRep)

https://core.ac.uk/display/30627144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  2 

1. Introduction 

It is estimated that about £210m is spent annually in the UK on installation and 

reinstatement of road ironwork (Brown and Brown, 1997).  A normal reinstatement 

would be planned for the period between the morning and evening rush hours and the 

bedding and reinstatement materials used must, therefore, be able to withstand traffic 

loading very soon after installation.  Frequently, the work is hurried and not carried 

out to a high standard, requiring repair after a short period, again with similar material 

and labour costs.  A modest improvement in understanding of the interaction between 

installations and traffic loading could lead to considerable savings, estimated to be 

£6m per year. 

 

In a previous project undertaken at the University of Nottingham the causes of 

premature failure in the bedding materials in road ironwork installations were 

investigated (Brown & Brown, 1997, 1998, 1999).  Results from full-scale laboratory 

tests, field tests and FE modelling indicated that, under certain loading situations, 

tensile stresses can be generated in the bedding material which can exceed its tensile 

strength.  This research resulted in improved ironwork designs to minimise these 

stresses and an improved bedding mortar specification to ensure sufficient tensile 

strength, compressive strength and shrinkage characteristics of the material (Brown, 

2001; Highways Agency, 2002).  The improved understanding of the 

ironwork/bedding material system developed from this project formed the starting 

point for the research described in this paper. 

 

Although results from the previous project have led the way to improved mortar 

specifications, the problem of premature cracking in the surrounding asphalt surfacing 

material was not directly addressed.  This material is usually a hot asphalt or a 

proprietary emulsion product and is generally placed immediately after the ironwork 

has been installed and the bedding material has hardened.  Field observations of in-

service road ironwork installations  have shown that extensive cracking, initiated from 

the corners of the installations, can occur in the asphalt without visible deterioration 

of the bedding material (Brown & Brown, 1997).  The mechanism for this damage is 

not fully understood, although it seems likely that it is related to the mismatch 

between the in-situ vertical stiffness of the road ironwork installation and the 

surrounding pavement structure.  Results from in-situ testing have also shown that the 
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vertical stiffness directly over the chamber can be a factor of 2.5 greater than the 

vertical stiffness away from the installation (Brown & Brown, 1997).  This mismatch 

in stiffness is likely to cause high tensile and shear stresses and strains in the asphalt 

material adjacent to the installation that may lead to premature cracking and damage. 

 

The research described in this paper forms part of a larger project that involved a 

study of the overall structural characteristics of road ironwork installations, 

concentrating on the chamber construction.  The principal aim was to provide the 

background research which would allow improved designs to be developed to reduce 

the incidence of failures.  In doing this, recycled polymeric construction materials 

were studied with a view to including them in future designs and specifications.  They 

were chosen partly to produce a lower stiffness installation and partly for reasons of 

sustainability.  The breadth of research was similar to, and built on, results from the 

earlier work and involved field testing, laboratory full-scale testing, materials testing 

and FE analysis. 

 

This paper describes FE analyses that were undertaken using the ANSYS program to 

better understand the mechanical performance of road ironwork installations that 

incorporate flexible elements.  The paper is divided into two main sections.  In the 

first section, global and local buckling analyses of the flexible elements are described 

and compared with experimental results.  In the second section, FE models of a 

traditional masonry chamber construction and a flexible construction are developed 

and validated with measurements from full-scale laboratory experiments.  The 

validated models are then used to investigate the effect of the flexibility on critical 

values of deflection and strain. 

 

2. Flexible Elements 

The material used to introduce flexibility into the chamber wall, known as “Jig Brix”, 

is a polymeric building brick (made from recycled material) designed as a 

replacement for concrete or masonry.  Each brick has an interlocking system that 

allows sections to be built-up from single bricks without the need to any additional 

bonding.  A photograph of a typical single Jig Brix element is shown in Figure 1.  It 

can be seen from this figure that the shape of the Jig Brix element is complex.  The 

primary material used in its manufacture is recycled polypropylene. 
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The main geometrical properties of a single Jig Brix element are summarised in Table 

1.  The cross-sectional area, moment of inertia, elastic section modulus and radius of 

gyration were determined using a purpose-written computer program based on a 

numerical procedure where any geometric shape can be treated as a general polygon 

(see Cope et al, 1982 for further details). 

 

Young’s modulus and Poisson’s ratio of the recycled polyproplyene material were 

estimated from laboratory experiments to be approximately 1,000MPa and 0.25 

respectively.  It was found that these values were not strongly dependent on 

temperature and loading frequency (see Collop et al, 2002 for further details). 

 

3. Buckling 

The main loading mechanism for an in-service road ironwork installation located in 

the wheel path of a road is due to traffic loading.  As a wheel passes over an 

installation, the load is transferred into the chamber wall mainly in compression.  

Since the height of the chamber wall can be quite large, it is necessary to investigate 

the buckling capacity of the wall to ensure that this mode of failure does not occur.  

Because of the complex nature of the Jig Brix elements, two types of buckling could 

occur.  These are global buckling as a result of the wall acting as a single unit, and 

local buckling due to failure in an individual Jig Brix element.  Both these failure 

mechanisms were examined in the following sub-sections.  The buckling capacity of 

columns comprising a number of single width Jig Brix elements stacked vertically 

was investigated and results compared to laboratory experiments. 

 

3.1 Global Buckling Analysis 

The global buckling capacity of a Jig Brix column under compressive loading can be 

determined using the well known Euler buckling formula,  (Popov,1999): 
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where: Pcr = Critical buckling load 

E   = Young’s modulus  

 I    = Second moment of area 
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 Le  = Effective length 

The effective length (Le) depends on the boundary conditions at each end of the 

column.  For comparison with the experimental results, a cantilever column was most 

appropriate (Le = 2L).  Calculations were also undertaken for a column with pinned 

ends  (Le = L) because, in reality, where the Jig Brix are part of a chamber 

construction, the end constraint is likely to be between these two cases. 

 

Figure 2 shows the predicted global buckling capacity plotted as a function of the 

height of the Jig Brix column.  It can be seen from this figure that the global buckling 

capacity is inversely proportional to the height of the column and the capacity for the 

pinned end conditions is greater than the capacity for the cantilever end condition.  It 

can also be seen from Figure 2 that the global buckling capacity is between 

approximately 15kN and 60kN for a 600mm high Jig Brix column.  In practice, the 

cross section of a Jig Brix wall in a chamber construction typically comprises two 

units, linked horizontally, providing a double thickness wall which will significantly 

increase the buckling capacity.  For example, assuming that there is no coupling 

(which is a pessimistic assumption) the global buckling capacity will be doubled to at 

least 80kN. 

 

3.2 Local Buckling Analysis 

Local buckling might be expected for part of the Jig Brix units when it is subjected to 

axial compression because it consists of relatively thin webs, flanges and stiffeners, 

Figure 1.  The local buckling capacity of the Jig Brix unit cannot be accurately 

determined using an analytical method due to the complex shape of the Jig Brix 

elements.  Therefore, FE analysis was undertaken to determine the local buckling 

capacity of a Jig Brix column made of one, two or three Jig Brix units stacked 

vertically. 

 

In the FE analysis, the Jig Brix column was represented using a series of rigidly 

connected thin plates, discretised using 8-node structural shell elements as shown in 

Figure 3.  A geometrically nonlinear analysis was undertaken for both boundary 

conditions.   
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The numerical results are also shown in Figure 2 and the predicted local buckling 

failure mode is shown in Figure 4.  It can be seen from Figure 2 that, as with the 

global buckling predictions, the local buckling capacity is greater for the pinned end 

conditions compared to the cantilever end condition.  It can also be seen that results 

for the local buckling capacity show a lower sensitivity to the height of the Jig Brix 

column compared to the predicted global buckling capacity.  Figure 2 also shows that, 

for both end conditions, local buckling is predicted to occur before global buckling for 

column heights below approximately 350mm. 

 

3.3 Comparison with Experimental Results 

Laboratory experiments were also undertaken to determine the buckling capacity of a 

Jig Brix wall 2 elements wide and 1 or 3 elements in height (Collop et al., 2002).  

Results are shown in Figure 2 and a photograph of a local buckling failure for a 1-

element high column is shown in Figure 5.  For both cases, the mode of failure was 

local buckling.  It can be seen from Figure 2 that the measured local buckling capacity 

agrees well with the predicted local buckling capacity assuming a cantilever end 

condition.  It can also be seen by comparing Figure 5 with Figure 4 that there is good 

agreement between the local buckling failure mode shapes obtained from the 

experiments and predicted by FE analysis. 

 

3.4 Practical Implications 

The worst case practical scenario in a Jig Brix construction will occur when the wheel 

load is transferred directly through the frame onto one wall of the installation.  

Assuming a standard 20kN wheel load, the factor of safety based on the experimental 

results will be approximately 3 for a single skin wall, comprising 3 no. Jig Brix, and 

approximately 6 for a double skin wall, comprising 3 no. Jig Brix.  It should also be 

noted that, in reality, the factor of safety will be greater than these figures since it has 

been assumed that the wheel load will be transferred through a column of single-

width Jig Brix. 

 

 

4. FE Modelling of Road Ironwork/Pavement Systems 

To investigate the behaviour of road ironwork installations comprising flexible Jig 

Brix elements, three-dimensional FE analysis was used.  Two basic models were 
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developed representing flexible and traditional masonry installations.  The models 

were validated using data from full-scale laboratory testing.  A schematic of the two 

laboratory installations is shown in Figure 6.  The validated models were then used to 

investigate the effect of varying the height of the Jig Brix wall in the chamber 

constructions. 

 

4.1 FE Models 

To simplify the complex geometry of the Jig Brix elements (see Figure 1), solid 20-

node brick elements were used with an equivalent Young’s modulus of 400MPa.  This 

was determined by equating the relative axial and bending stiffness of a single Jig 

Brix element to those of an equivalent solid brick element.  Mechanical properties for 

the other materials used in the FE analysis are detailed in Table 2.  These values were 

either obtained from experimental work (Collop et al., 2002 and Brown, 1997) or 

were taken from available literature (e.g. Ashby and Jones, 1998). 

 

An equivalent static wheel load of 18kN was assumed to be distributed over a 

rectangular area of approximately 200 x 300 mm2 (this was the wheel load used in the 

laboratory tests).  The load was placed along the center line of the chamber creating 

an axis of symmetry thus simplifying the model and decreasing the computation time.  

For both chamber constructions, several locations of the load were considered to 

simulate tracking of the wheel over the road ironwork chamber.  At the boundaries of 

the model it was assumed that motion parallel to the boundary is unrestrained whilst 

motion perpendicular to the boundary is fully restrained.  In reality, friction between 

the edges of the sides and bottom of the pit and adjacent material will mean that 

motion parallel to the boundary is not completely un-restrained.  The response of the 

structural systems, in terms of displacements, strains and stresses, were calculated at 

selected critical points for comparison with experimental results. 

 

Sub-modelling was used to investigate the accuracy of the results in a region of 

interest and to confirm that they did not strongly depend on the mesh density (number 

of elements).  The procedure for sub-modeling consisted of the following steps: 

(i) A model for the entire structure was created and analysed,  

(ii)  A sub-model with a higher mesh density was created and displacement 

boundary conditions calculated from the full model were applied,  
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(iii)  The sub-model was analysed and the results were compared to the full 

model.  If the results did not vary significantly, the mesh density in the full 

model was considered to be adequate.  If not, the full model was refined 

and the procedure repeated. 

 

4.2 FE Predictions 

Figure 7 shows the predicted surface deflections, adjacent to the centre of the wheel 

load for various points relative to the centre of the chamber and for both types of 

chamber construction.  The edge of the ironwork cover is 300mm from the centre and 

the extent of the chamber wall is indicated.  It can be seen from this figure that, when 

the load is located 900mm from the centre of the cover, the predicted surface 

deflections are similar in magnitude indicating that the chamber is sufficiently far 

away not to significantly influence the results.  As the wheel approaches the chamber, 

the predicted surface deflections for the flexible installation become greater than for 

the traditional masonry installation due to the increased compliance of the system.  

The largest difference between the predicted surface deflections occurs when the load 

is applied directly over the chamber wall. 

 

4.3 Comparison with Experimental Results 

Full-scale experiments were undertaken on the two chamber constructions using the 

Road Ironwork Laboratory Test Facility (RILTF) at Nottingham.  This facility 

operates over a 4m x 2.4m x 1.9m deep pit in which the two chambers were 

constructed within a three layer pavement.  A rolling wheel load was applied to the 

surface of the construction using two pneumatic actuators for the vertical load and a 

long stoke pneumatic actuator for horizontal movement.  Full details of the 

experimental facility were described by Brown and Brown (1998) and later 

modification by Collop et al. (2002). 

 

The measured surface deflections for both chamber installations are also shown in 

Figure 7.  It can be seen from this figure that agreement between the predicted and 

measured surface deflections for the masonry chamber construction is generally good 

whereas there is poorer agreement between the predicted and measured surface 

deflections for the Jig Brix construction.  This is particularly evident when the load is 

applied near to the chamber wall where the measured results are significantly higher 
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than the predicted results.  This may be attributed to the existence of slight gaps 

between Jig Brix units as they are not a perfect fit with each other due to slight 

manufacturing imperfections, giving apparently lower chamber stiffnesses than used 

in the model.  However, when the wheel load passes over the manhole, these gaps will 

tend to close and more realistic stiffness value would be expected.  It should also be 

noted that a number of other simplifications have been made in the model which may 

contribute to the discrepancy.  For example, it has been assumed that there is no 

relative motion between the outside edge of the chamber wall and the surrounding 

material and the complex cellular shape of the jig brix units has been replaced by 

equivalent solid brick elements. 

  

The tensile strains measured at the base of the asphalt layer at two locations are given 

in Table 3 together with the predicted strains at the same locations for both chamber 

constructions.  It can be seen from the data in this table that, as with the surface 

deflections, agreement is better for the traditional masonry chamber.  The largest 

recorded difference between experiment and finite element results was 51% and that 

was for the standard Jig Brix chamber.   

 

It should be noted that there has been no attempt to calibrate the FE model to better 

match the experimental results (particularly in the case of the flexible chamber 

construction). 

 

4.4 Surface Cracking 

As noted earlier, one of the objectives of this research was to better understand the 

mechanism for surface cracking in the asphaltic material that surrounds road ironwork 

construction.  Extensive research into cracking of asphalt has been undertaken and it 

is generally accepted that initiation of cracking is controlled by the level of horizontal 

tensile strain that develops under traffic and environmental loading (Pell, 1973). The 

tensile strains shown in Table 3 for both types of construction are of magnitudes that 

are likely to initiate fatigue cracking in a reasonably trafficked roads.  Such cracks 

would take time to propagate to the surface (Pell, 1973). The FE model was used to 

investigate the tensile strain at the surface of the asphalt, immediately surrounding the 

chamber to see whether surface initiated cracking was likely and whether the more 
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flexible chamber construction might reduce this possibility.  No measurements of 

surface strain were made in the laboratory experiments.   

 

It was found that when the load was applied away from the chamber wall, tensile 

strains were generated at the surface of the asphalt induced by the differential vertical 

stiffness of the pavement and the chamber.  Figure 8 illustrates the concept.  Figure 9 

shows the horizontal strain calculated at the surface of the asphalt layer plotted as a 

function of distance from the centre of the chamber where the centre of the load was 

750mm from the centre of the cover.  This was found to be the location where the 

highest horizontal tensile surface strain was predicted for the masonry chamber 

construction.  It can be seen from this figure that, for this construction, there is a small 

region adjacent to the chamber where the horizontal tensile strain on the surface of the 

asphalt is quite high.  As expected, due to bending of the asphalt layer, the horizontal 

surface strain directly under the load is compressive.  Figure 9 also shows the 

corresponding situation for a Jig Brix chamber.  It can be seen that the maximum 

horizontal tensile strain adjacent to the chamber is significantly reduced compared 

with the traditional chamber (by a factor of approximately 4).  This indicates that, 

under these conditions, surface cracking will be much more likely to occur in masonry 

construction than in the more flexible Jig Brix construction.  The magnitude of tensile 

strain at the surface for masonry construction is consistent with the initiation of 

cracking. 

 

5. Summary and Conclusions 

Three-dimensional FE analysis has been shown to be a suitable numerical tool for 

modelling road ironwork installations.  It gives a relatively realistic representation for 

the geometrical configuration of the structural system and wheel load distribution.  

The finite element results are in reasonable agreement with those obtained from 

experimental work. 

 

The buckling capacity for practical heights of a Jig Brix wall under axial compression 

is more than 50kN.  The concept of using Jig Brix as flexible material in manhole 

construction was found to reduce the abrupt change in stiffness between the manhole 

and the surrounding pavement. Therefore, it helps distribute the displacement over a 

larger area both horizontally and vertically, as well as significantly decreasing the 
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tensile strain on the top of asphalt layer near the manhole cover.  Hence, the potential 

for development of cracks and eventual failure of the pavement near the manhole 

chamber is reduced. 
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Tables 

 
Table 1: Geometrical properties of a Jig Brix unit. 

 
Item Value 
Length (mm) 153 
Width (mm) 76 
Height (mm) 76 
Cross-sectional area (mm2) 3710 
Moment of inertia (mm4) 2,278,100 
Elastic section modulus (mm3) 29,970 
Radius of gyration (mm) 24.78 

 
 
 
 
 

Table 2: Mechanical properties of the materials used in FE models for manhole chambers. 
 

No. Item Young's 
modulus (MPa) 

Poisson's ratio 
 

1 Pavement (Asphalt) 1000 0.4 
2 Sub-base (crushed rock) 150 0.3 
3 Sub-grade (silty clay) 50 0.4 
4 Ironwork (ductile iron) 165,000 0.3 
5 Mortar  21,000 0.14 
6 Masonry 14,000 0.2 
7 Concrete slab 30,000 0.2 
8 Jig Brix 400 0.25 
9 Rubber 175 0.2 

 
 
 
 
 
Table 3: Tensile strain at the bottom of asphalt due to 18 kN wheel load tracking 

along the centre line of the chamber. 
 
Chamber Strain Gauge* 

Location (mm) 
Measured Strain 
(micro strain) 

Computed 
Strain 
(micro strain) 

% under 
prediction 

Masonry 
 

630 
830 

160 
140 

128 
135 

20 
4 

Jig Brix 
 

630 
830 

340 
290 

166 
142 

51 
51 

 
* Relative to centre of chamber 
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Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Photograph of a single Jig Brix element. 
 
 
 

 
 
 

Figure 2:  Theoretical and experimental buckling capacity of Jig Brix column. 
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Figure 3:  FE mesh of a Jig Brix column using 8-node shell elements. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:  Predicted FE local buckling failure of Jig Brix column. 
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Figure 5:  Experimental buckling failure mode of the Jig Brix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6(a):  Cross-section of the conventional masonry road ironwork installation. 
                             (dimensions in mm) 
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Figure 6(b):  Cross-section of the flexible road ironwork installation. 
                                          (Dimensions in mm) 
 
 
 

 
 

Figure 7:  Surface deflections due to wheel load tracking at 18kN. 
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Figure 8:  Displaced shape of asphalt layer in the vicinity of a chamber, (after Brown 

and Brown, 1999). 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Finite element prediction of horizontal strain at the top of asphalt 
              layer, positive value means tensile strain. 
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