6,655 research outputs found

    Application of a low order panel method to complex three-dimensional internal flow problems

    Get PDF
    An evaluation of the ability of a low order panel method to predict complex three-dimensional internal flow fields was made. The computer code VSAERO was used as a basis for the evaluation. Guidelines for modeling internal flow geometries were determined and the effects of varying the boundary conditions and the use of numerical approximations on the solutions accuracy were studied. Several test cases were run and the results were compared with theoretical or experimental results. Modeling an internal flow geometry as a closed box with normal velocities specified on an inlet and exit face provided accurate results and gave the user control over the boundary conditions. The values of the boundary conditions greatly influenced the amount of leakage an internal flow geometry suffered and could be adjusted to eliminate leakage. The use of the far-field approximation to reduce computation time influenced the accuracy of a solution and was coupled with the values of the boundary conditions needed to eliminate leakage. The error induced in the influence coefficients by using the far-field approximation was found to be dependent on the type of influence coefficient, the far-field radius, and the aspect ratio of the panels

    Delayed-choice quantum eraser for the undergraduate laboratory

    Get PDF
    In a delayed-choice quantum eraser, interference fringes are obtained by erasing which-way information after the interfering particle has already been irreversibly detected. Following an introductory review of delayed-choice experiments and quantum erasure, we describe the experimental realization of an optical delayed-choice quantum eraser, suitable for advanced undergraduates, based on polarization-entangled pairs of single photons. In our experiment, the delay of the erasure is implemented using two different setups. The first setup employs an arrangement of mirrors to increase the optical path length of the photons carrying which-way information. In the second setup, we use fiber-optic cables to elongate the path of these photons after their passage through the polarization analyzer but prior to their arrival at the detector. We compare our results to data obtained in the absence of a delay and find excellent agreement. This shows that the timing of the erasure is irrelevant, as also predicted by quantum mechanics. The experiment can serve as a valuable pedagogical tool for conveying the fundamentals of quantum mechanics.Comment: 13 pages, 5 figures, identical to published versio

    Cardiovascular MRI in clinical trials: expanded applications through novel surrogate endpoints

    Get PDF
    Recent advances in cardiovascular magnetic resonance (CMR) now allow the accurate and reproducible measurement of many aspects of cardiac and vascular structure and function, with prognostic data emerging for several key imaging biomarkers. These biomarkers are increasingly used in the evaluation of new drugs, devices and lifestyle modifications for the prevention and treatment of cardiovascular disease. This review outlines a conceptual framework for the application of imaging biomarkers to clinical trials, highlights several important CMR techniques which are in use in randomised studies, and reviews certain aspects of trial design, conduct and interpretation in relation to the use of CMR

    Observation of the quantum paradox of separation of a single photon from one of its properties

    Get PDF
    We report an experimental realization of the quantum paradox of the separation of a single photon from one of its properties (the so-called "quantum Cheshire cat"). We use a modified Sagnac interferometer with displaced paths to produce appropriately pre- and postselected states of heralded single photons. Weak measurements of photon presence and circular polarization are performed in each arm of the interferometer by introducing weak absorbers and small polarization rotations and analyzing changes in the postselected signal. The absorber is found to have an appreciable effect only in one arm of the interferometer, while the polarization rotation significantly affects the signal only when performed in the other arm. We carry out both sequential and simultaneous weak measurements and find good agreement between measured and predicted weak values. In the language of Aharonov et al. and in the sense of the ensemble averages described by weak values, the experiment establishes the separation of a particle from one its properties during the passage through the interferometer.Comment: 9 pages, 4 figures, identical to published versio

    The Paraldor Project

    Get PDF
    Paraldor is an experiment in bringing the power of categorical languages to lattice QCD computations. Our target language is Aldor, which allows the capture of the mathematical structure of physics directly in the structure of the code using the concepts of categories, domains and their inter-relationships in a way which is not otherwise possible with current popular languages such as Fortran, C, C++ or Java. By writing high level physics code portably in Aldor, and implementing switchable machine dependent high performance back-ends in C or assembler, we gain all the power of categorical languages such as modularity, portability, readability and efficiency.Comment: 4 pages, 2 figures, Lattice 2002 conference proceeding

    Pioneer Anomaly and the Helicity-Rotation Coupling

    Get PDF
    The modification of the Doppler effect due to the coupling of the helicity of the radiation with the rotation of the source/receiver is considered in the case of the Pioneer 10/11 spacecraft. We explain why the Pioneer anomaly is not influenced by the helicity-rotation coupling.Comment: LaTeX file, 1 figure, 6 pages, v2: note and figure added at the end of the paper, to be published in Phys. Lett.

    Amine-terminated nanoparticle films: pattern deposition by a simple nanostencilling technique and stability studies under X-ray irradiation

    Get PDF
    Exploring the surface chemistry of nanopatterned amine-terminated nanoparticle films.</p
    corecore