5,526 research outputs found

    Health care resouce use and stroke outcome

    Get PDF
    Background and Purpose: Outcome in patients hospitalized for acute stroke varies considerably between populations. Within the framework of the GAIN International trial, a large multicenter trial of a neuroprotective agent (gavestinel, glycine antagonist), stroke outcome in relation to health care resource use has been compared in a large number of countries, allowing for differences in case mix. Methods: This substudy includes 1,422 patients in 19 countries grouped into 10 regions. Data on prognostic variables on admission to hospital, resource use, and outcome were analyzed by regression models. Results: All results were adjusted for differences in prognostic factors on admission (NIH Stroke Scale, age, comorbidity). There were threefold variations in the average number of days in hospital/institutional care (from 20 to 60 days). The proportion of patients who met with professional rehabilitation staff also varied greatly. Three-month case fatality ranged from 11% to 28%, and mean Barthel ADL score at three months varied between 64 and 73. There was no relationship between health care resource use and outcome in terms of survival and ADL function at three months. The proportion of patients living at home at three months did not show any relationship to ADL function across countries. Conclusions: There are wide variations in health care resource use between countries, unexplained by differences in case mix. Across countries, there is no obvious relationship between resource use and clinical outcome after stroke. Differences in health care traditions (treatment pathways) and social We thank the coinvestigators and research staff at the participating centers for their support. Glaxo Wellcome sponsored the GAIN International trial, supported the present analyses and reviewed the final draft of the article

    Information based clustering

    Full text link
    In an age of increasingly large data sets, investigators in many different disciplines have turned to clustering as a tool for data analysis and exploration. Existing clustering methods, however, typically depend on several nontrivial assumptions about the structure of data. Here we reformulate the clustering problem from an information theoretic perspective which avoids many of these assumptions. In particular, our formulation obviates the need for defining a cluster "prototype", does not require an a priori similarity metric, is invariant to changes in the representation of the data, and naturally captures non-linear relations. We apply this approach to different domains and find that it consistently produces clusters that are more coherent than those extracted by existing algorithms. Finally, our approach provides a way of clustering based on collective notions of similarity rather than the traditional pairwise measures.Comment: To appear in Proceedings of the National Academy of Sciences USA, 11 pages, 9 figure

    Age- and sex-related variations in the brain white matter fractal dimension throughout adulthood: an MRI study.

    Get PDF
    To observe age- and sex-related differences in the complexity of the global and hemispheric white matter (WM) throughout adulthood by means of fractal dimension (FD)

    Principles of genome evolution in the Drosophila melanogaster species group.

    Get PDF
    That closely related species often differ by chromosomal inversions was discovered by Sturtevant and Plunkett in 1926. Our knowledge of how these inversions originate is still very limited, although a prevailing view is that they are facilitated by ectopic recombination events between inverted repetitive sequences. The availability of genome sequences of related species now allows us to study in detail the mechanisms that generate interspecific inversions. We have analyzed the breakpoint regions of the 29 inversions that differentiate the chromosomes of Drosophila melanogaster and two closely related species, D. simulans and D. yakuba, and reconstructed the molecular events that underlie their origin. Experimental and computational analysis revealed that the breakpoint regions of 59% of the inversions (17/29) are associated with inverted duplications of genes or other nonrepetitive sequences. In only two cases do we find evidence for inverted repetitive sequences in inversion breakpoints. We propose that the presence of inverted duplications associated with inversion breakpoint regions is the result of staggered breaks, either isochromatid or chromatid, and that this, rather than ectopic exchange between inverted repetitive sequences, is the prevalent mechanism for the generation of inversions in the melanogaster species group. Outgroup analysis also revealed evidence for widespread breakpoint recycling. Lastly, we have found that expression domains in D. melanogaster may be disrupted in D. yakuba, bringing into question their potential adaptive significance

    FlyBase: enhancing Drosophila Gene Ontology annotations

    Get PDF
    FlyBase (http://flybase.org) is a database of Drosophila genetic and genomic information. Gene Ontology (GO) terms are used to describe three attributes of wild-type gene products: their molecular function, the biological processes in which they play a role, and their subcellular location. This article describes recent changes to the FlyBase GO annotation strategy that are improving the quality of the GO annotation data. Many of these changes stem from our participation in the GO Reference Genome Annotation Project—a multi-database collaboration producing comprehensive GO annotation sets for 12 diverse species

    Generative discriminative models for multivariate inference and statistical mapping in medical imaging

    Full text link
    This paper presents a general framework for obtaining interpretable multivariate discriminative models that allow efficient statistical inference for neuroimage analysis. The framework, termed generative discriminative machine (GDM), augments discriminative models with a generative regularization term. We demonstrate that the proposed formulation can be optimized in closed form and in dual space, allowing efficient computation for high dimensional neuroimaging datasets. Furthermore, we provide an analytic estimation of the null distribution of the model parameters, which enables efficient statistical inference and p-value computation without the need for permutation testing. We compared the proposed method with both purely generative and discriminative learning methods in two large structural magnetic resonance imaging (sMRI) datasets of Alzheimer's disease (AD) (n=415) and Schizophrenia (n=853). Using the AD dataset, we demonstrated the ability of GDM to robustly handle confounding variations. Using Schizophrenia dataset, we demonstrated the ability of GDM to handle multi-site studies. Taken together, the results underline the potential of the proposed approach for neuroimaging analyses.Comment: To appear in MICCAI 2018 proceeding

    Optimal deep brain stimulation site and target connectivity for chronic cluster headache

    Get PDF
    OBJECTIVE: To investigate the mechanism of action of deep brain stimulation for refractory chronic cluster headache and the optimal target within the ventral tegmental area. METHODS: Seven patients with refractory chronic cluster headache underwent high spatial and angular resolution diffusion MRI preoperatively. MRI-guided and MRI-verified electrode implantation was performed unilaterally in 5 patients and bilaterally in 2. Volumes of tissue activation were generated around active lead contacts with a finite-element model. Twelve months after surgery, voxel-based morphometry was used to identify voxels associated with higher reduction in headache load. Probabilistic tractography was used to identify the brain connectivity of the activation volumes in responders, defined as patients with a reduction of ≥30% in headache load. RESULTS: There was no surgical morbidity. Average follow-up was 34 ± 14 months. Patients showed reductions of 76 ± 33% in headache load, 46 ± 41% in attack severity, 58 ± 41% in headache frequency, and 51 ± 46% in attack duration at the last follow-up. Six patients responded to treatment. Greatest reduction in headache load was associated with activation in an area cantered at 6 mm lateral, 2 mm posterior, and 1 mm inferior to the midcommissural point of the third ventricle. Average responders' activation volume lay on the trigeminohypothalamic tract, connecting the trigeminal system and other brainstem nuclei associated with nociception and pain modulation with the hypothalamus, and the prefrontal and mesial temporal areas. CONCLUSIONS: We identify the optimal stimulation site and structural connectivity of the deep brain stimulation target for cluster headache, explicating possible mechanisms of action and disease pathophysiology

    The ontology of biological taxa

    Get PDF
    Motivation: The classification of biological entities in terms of species and taxa is an important endeavor in biology. Although a large amount of statements encoded in current biomedical ontologies is taxon-dependent there is no obvious or standard way for introducing taxon information into an integrative ontology architecture, supposedly because of ongoing controversies about the ontological nature of species and taxa
    corecore