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Conclusions This study is the first that investigates the 
WM FD spanning adulthood, treating age both as a con-
tinuous and categorical variable. We found positive cor-
relations between FD and volume, and our results show 
similarities with those investigating small-world proper-
ties of the brain networks, as well as those of functional 
complexity and WM integrity. These suggest that FD could 
yield a highly compact description of the structural changes 
and also might inform us about functional and cognitive 
variations.
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Introduction

Normal aging is associated with functional and structural 
changes in the human brain. In recent decades, and particu-
larly since the advent of magnetic resonance imaging (MRI) 
scanners, many studies have been conducted to detect these 
alterations. White matter (WM), as one of the two brain 
tissues, mainly consists of glial cells and myelinated axons 
and undergoes several changes in normal aging. The stud-
ies focused on changes occurring in the WM structure in 
normal adults from MR images can broadly be categorized 
into two groups of volumetric analysis and shape analysis. 
For the first group, a discrepancy is evident among their 
results: while most have found shrinkage of global WM [1], 
some have reported no significant difference with aging 
[2]. Second group, investigating geometrical changes, 
which include, but are not restricted to, WM hyperinten-
sities (WMH) in T2-weighted images [3], lower magnetic 
transfer ratio (MTR) [3], lower fractional anisotropy (FA) 
in diffusion tensor images (DTIs) [3–5], and changes in 
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structural networks [6] and connectivity [4]. These groups 
of changes are usually due to the loss of myelin sheets and 
axonal fibers resulting in a reduction in the WM integrity 
[3]. Changes of the complexity of the brain WM are also 
investigated in a few studies [7], but these are not preva-
lent due to methodological challenges [8]. Structural com-
plexity may provide a compact description of a group of 
structural changes [9]. Thus, in the current study, we have 
focused on the brain structural complexity by means of 
fractal dimension (FD).

FD, introduced by Mandelbrot [10], is a substitute for 
Euclidean dimension in the case of complex objects that 
indicate self-similarity, which is applicable to many natural 
phenomena. For non-Euclidean objects, FD usually exceeds 
topological dimension and is noninteger, whereas for ordi-
nary shapes, it is equal to the traditional Euclidean dimen-
sion. Therefore, FD as an index of statistical complexity has 
been used in several fields of study, including medicine and 
biology [11–14]. We chose FD for this study because it is 
compatible with the geometry of the brain and can serve 
as a structural signature by compressing many character-
istics into a single number [9]. Moreover, as reported by 
some previous studies [9–15], there is a positive correlation 
between FD of the gray matter (GM) and WM and one’s 
intelligence and cognitive performance. Therefore, our 
results, in addition to quantifying structural changes, could 
also account for age- and sex-related differences in the brain 
and cognitive abilities.

FD has previously been used to quantify the changes 
occurring in the complexity of the brain in some diseases, 
as well as in normal aging. In [7], the authors extracted this 
feature from brain MR images to compare WM complexity 
between young and older normal adults. They found that 
WM complexity significantly decreases with aging, and this 
change was specifically seen in the WM skeleton. They also 
reported gender differences, with men showing higher FDs 
than women, and age-related effects were more visible in 
the left hemisphere for men, but in the right hemisphere for 
women. In this study, we pursue an analogous aim, namely 
the investigation of age- and sex-related changes in the FD 
of three structural layers during adulthood. The dataset we 
use is a larger sample covering a substantial age range of 
adult life (20–80 years). It allows age to be treated as a 
continuous variable, and also enables comparisons of three 
groups of young, middle age, and old instead of the usual 
two. We also investigate the correlations between WM vol-
ume and FD and the effects of the former on the latter in 
detail. These could shed more light on the clinical signifi-
cance and applicability of FD.

Materials and Methods

Subjects

The data used for this study are a part of the publicly acces-
sible Information eXtraction from Images (IXI) database 
[16]. The whole dataset contained images from three scan-
ners, and subjects were divided into five ethnic groups and 
five levels of qualification. To reduce the variations and non-
normality and obtain more precise results from the compar-
ative analysis, we only used the data gathered from one of 
the scanners, a Philips 1.5-T system at Guy’s Hospital, and 
limited our analysis to the subjects of white ethnicity and 
with a high school diploma or higher education. Hence, our 
data contain brain MR images of 209 psychologically nor-
mal subjects aged 20–80 (49.31 ± 15.5) years, among which 
95 are men (age: 47.54 ± 15.2 years) and 114 are women 
(age: 50.78 ± 15.7 years). We first investigated age as a con-
tinuous variable, then also categorized subjects into three 
groups of young, mid-age, and old, labeling subjects aged 
less than 40 years as young (36 men aged 31.71 ± 5.2 years 
and 31 women aged 30.1 ± 5.5 years), those aged between 
40 and 60 years as mid-age (35 men aged 50.19 ± 6.6 years 
and 48 women aged 51.58 ± 6.5 years), and those aged more 
than 60 years as old (24 men aged 67.42 ± 5.1 years and 35 
women aged 68.02 ± 5.8 years). This categorization might 
provide an opportunity for more convenient comparisons 
between our results and those of previous studies, which 
have considered age-groups.

Image Acquisition

The T1-weighted MR images had been acquired on a Philips 
Gyroscan Intera 1.5-T scanner at Guy’s Hospital, with rep-
etition time ~ 9.81 ms, echo time ~ 4.6 ms, number of phase-
encoding steps = 192, echo train length = 0, reconstruction 
diameter = 240 mm, and flip angle = 8. For each image, the 
original pixel size was approximately 0.938 × 0.938 × 1.2 mm, 
and the matrix representing each sagittal plane was 256 × 256, 
with 150 planes for each subject.

Preprocessing

All preprocessing and postprocessing of the MR images, 
as well as modeling and statistical analysis, are performed 
using MATLAB R2009a or R2012a (MathWorks, Natick, 
MA) in this study. For the preprocessing, as illustrated in 
Fig. 1, the “New Segment” toolbox of the SPM8 package 
was used to segment the structural scans and extract the 
WM. The procedure includes an integrated modeling frame-
work, which combines tissue classification, bias correction, 
and nonlinear warping, altogether [17]. For this purpose, 
images should be first coarsely aligned with tissue probabil-
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we have done is a trade-off between obtaining fully con-
nected versus thin skeletonizations. Because the box sizes 
used to calculate FD (to be explained shortly) were two 
voxels or larger, slight disconnections would not affect FD 
significantly. We also tested a fully parallel 3D algorithm 
suggested in [20], but it was significantly slower, while thin-
ning and connectivity of the outcome was not ideal either.

Three-Dimensional Fractal Dimension

Among several approaches available to calculate the FD, 
the one known as box-counting (BC) [21] is used here. BC 
is the most frequently used method for fractal analysis of 
brain images due to its simplicity and robustness. Also, as 
BC does not require the objects to be strictly self-similar, it 
is appropriate for brain analysis. This is because the human 
brain, like many other natural structures, is self-similar only 
over particular scales.

The core of all BC algorithms involves first covering 
the whole image with a mesh of a minimum box size (r) 
and counting the number of boxes required to cover the 
object entirely (N). By repeating the procedure over a range 
of values of r, the corresponding values for N are calcu-
lated. Figure 2a shows images of the WM original tissue 
and skeletonized version, each covered with two meshes of 
box sizes 4 and 8, respectively. Thereafter, plotting loge(N) 
versus loge(1/r) would result in a diagram similar to Fig. 2b. 
Now, if we refer to points within the object as “Black” and 
those in the background as “White,” covering an image with 
a mesh would give three kinds of boxes: black, white, and 
gray (boxes that include both object points and background). 
In traditional BC methods, all boxes that wholly or partially 
contain object points are counted to result N. However, in 
this study, we used an algorithm that is analogous to the one 
introduced for 3D images in [8]. The algorithm defines five 
different box counts rather than only one: NB: black boxes; 
NW: white boxes; NG: gray boxes (this represents the bound-
aries of the object); NBW: sum of NB and NW; and NBG: sum 
of NB and NG. As can be understood, NBG is equal to N in 
traditional BC methods.

Two major issues in performing BC are the choice of box 
size range and the approach used for the single slope analy-
sis of linear area in the logarithmic plot for FD estimation. 
For the former, box sizes of 2 to one-third of the minimum 
dimension of the 3D image (which is 60 in this study) were 
used, as suggested in [8]. For the single slope analysis as 
well, we followed a same approach as reference [8]. Sup-
pose that we have K different box sizes and corresponding 
Ns. We divide this point set into pieces of length L, where 
the first segment includes points 1,2, …,  L, second includes 
2,3, …, L + 1, and so on. Afterward, a first-order polynomial 
is fitted to each segment, and the correlation coefficients 
between the real point set and the fitted one is computed. 

ity maps, which are modified versions of ICBM (Interna-
tional Consortium for Brain Mapping) Tissue Probabilistic 
Atlases. Then, a generative model is used, which includes 
parameters for tissue classification and registration, as well 
as parameters for image intensity inconsistencies. To esti-
mate the parameters of this model, an iterative switching 
among three steps of classification, bias correction, and 
registration is done to finally result in the desired posterior 
probabilities for each tissue class.

After segmentation, the images were slightly repositioned 
using the closest rigid-body transform to roughly match 
MNI (Montreal Neurological Institute) space and be in 
rigid-body alignment with each other [18]. They were then 
down-sampled to a symmetrical voxel size of 1 × 1 × 1 mm, 
yielding images of size 181 × 217 × 181. We used vertical 
mid-plane of these so-called “imported” images to separate 
the two hemispheres of the brain.

Skeletonization

Skeletonization is the procedure of removing as many 
boundary voxels as possible, without letting the image break 
apart. Preserving the connections is an important issue in 
skeletonization algorithms, as the skeletons should keep the 
topological properties of an image. We used a modification 
of the algorithm available in the Mindboggle toolbox [19]. 
The original program runs a pseudo-3D algorithm, which 
skeletonizes the 3D image plane by plane and then inte-
grates the results from planar images. As in this procedure, 
the connectivity will be preserved only in one direction, 
we implemented it in two different directions (coronal and 
transverse) and obtained the final result as a combination 
of these two. To obtain a skeleton with fully preserved con-
nections, one might expect skeletons derived from sagittal 
planes to be merged as well. However, it would be useful 
to note that implementing the procedure in multiple direc-
tions would affect one-voxel thickness of the skeleton, and 
it might become thick in some regions (as the procedure 
is done independently in each direction). Therefore, what 

Fig. 1 A flowchart representing steps of the pre- and postprocessing of 
the magnetic resonance images
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after preprocessing) determines the percentage (or probabil-
ity) of the WM in that voxel, we simply summed up the 
values of all voxels to calculate the whole WM volume, 
and a same procedure was repeated for each hemisphere 
separately.

Modeling the Changes

We adopted two approaches toward modeling the changes 
of FD. First, a model selection criterion was used to find 
the model that best fits the data, but does not indicate sta-
tistical significance. This part would help in visualization 
and understanding the trend of the changes. The second 
approach involved assessing age- and sex-related changes 
with statistical significance testing.

Akaike Information Criterion for Model Selection

To evaluate the changes occurring to the brain FD with 
aging, we first considered age as a continuous variable and 
used Akaike Information Criterion (AIC) [22] to find the 
degree of the polynomial that would best fit the data. AIC 
uses maximized value of likelihood function to find the best 
model for a given point set. It, meanwhile, tries to mini-
mize the number of the parameters in the statistical model 
to reduce the probability of overfitting. In other words, AIC 
would find the model (viz. polynomial in this study) that 
maximizes the likelihood with the minimum number of the 
parameters. For this, we used the polydeg.m function of 
MATLAB [23].

The segments are then sorted according to their correlations, 
and those with the greatest correlations are chosen, until the 
standard deviation of FDs estimated by them is less than 
0.01. Thereafter, by averaging FDs derived from each piece, 
the overall FD would be estimated. In this study, L was 
assigned to 11, and for most of the images, it was seen that 
a set of 5–10 segments fulfilled the condition of standard 
deviation. Therefore, depending on the properties of each 
image, 15–20 points in the logarithmic plot were usually 
used to estimate FD.

In this study, three different measures of FD were used 
to investigate changes occurring to the brain WM complex-
ity, including general FD, derived from the overall structure 
(similar to FDBG described in the previous section); bound-
ary (border or surface) FD, derived from WM boundaries 
(similar to FDG); and skeleton FD, derived from a skeleton-
ized image. The scale of analysis was twofold, global and 
hemispheric, where the former accounts for the trajectory of 
changes occurring in whole brain and the latter focuses on 
the brain hemispheres. The effect of age and sex on the brain 
complexity is examined in both scales and by means of all 
three FD measures.

Measuring the Volume

Tissue probability maps of the WM derived from SPM8, 
normalized, bias corrected, and roughly aligned to the MNI 
space (the procedure is described in preprocessing section) 
were used for a voxel-wise calculation of the volume. As 
the value of each voxel of a WM probability map (the image 

Fig. 2 a original (left) and skeletonized (right) white matter (WM) 
covered with a mesh with box sizes 8 and 4 (top and bottom, respec-
tively). The numbers of 8-voxel boxes required to cover the whole 
original image and the borders were 2,793 and 2,744, respectively, and 
the number of boxes to cover the skeleton was 2,467. For the 4-voxel 
boxes, these values were 15,292, 12,934, and 11,627. b A double-log-
arithmic (log–log) plot of the number of boxes required to cover 3D 

WM (N) versus the reciprocal of the box length (1/r). Black point set 
shows measurements at different scales, whereas the red line shows a 
trend of the linear fit to the point set. In the applied process, the linear 
fit consisted of a group of segments of length 11, with overlaps (as 
described in the text). To estimate fractal dimension, the average of the 
slopes of a group of these segments is calculated, such that the stan-
dard deviation of their slopes would not be more than 0.01
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It could be perceived that if an FD measure changes 
significantly with, for example, age, the absolute value of 
the corresponding linear coefficient in the primary model 
should be higher than most of the randomized trials. In other 
words, we expect the coefficients of the random trials to be 
randomly distributed around 0, but the coefficient of the fea-
tures to be significantly more positive/negative. Therefore, 
the proportion of the randomized trials that yield a higher 
absolute regression coefficient than the original fit would 
represent the p-value of this test: the higher the proportion, 
the lower the significance. This method of p-value calcula-
tion is called a two-sided permutation test.

To perform the permutation test, we first set FDs (each at 
a time) as dependent variables and age, sex, and the inter-
action between age and sex as independent or explanatory 
variables. We also included a column of ones and age2 in 
the design matrix to model the mean effect and control for 
possible nonlinear effects of the age, respectively. In the 
next step, we included the WM volume as well, to adjust for 
possible confounding effects of the volume on FD altera-
tions. Next, we set age as a categorical variable in the design 
matrix to compare three age cohorts of young, middle-aged, 
and old and replicated the two aforementioned steps.

Statistical Analysis

To examine whether FD measures significantly change with 
age or sex, we used permutation tests, which are a subgroup 
of nonparametric tests [24]. According to QQ-plots (Fig. 3) 
of our data, some features indicated distinct deviations 
from the normal distribution. Therefore, parametric tests, 
such as analysis of variance, may not have been applicable 
and could have yielded an incorrect rate of false-positive 
results. Permutation tests involved a multiple linear regres-
sion with one dependent variable and one or more indepen-
dent variables. In this test, at first, a primary regression is 
performed based on the response variable (e.g., FD) and the 
design matrix (encoding the independent variables, such as 
age, sex, etc.), so that the primary coefficients are obtained. 
To obtain the distribution under the null hypothesis, only 
the independent variable of interest (e.g., age) was ran-
domly permuted and regression repeated based on the new 
arrangement. Theoretically, this whole procedure should be 
replicated for any possible permutations. However, as in 
practice this number of rearrangements would be impos-
sible for large data samples, in this study we used random 
permutation and replicated the procedure 10,000 times.
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Fig. 3 QQ-plots of the general, skeleton, and boundary fractal dimen-
sions (FDs) of the whole brain and left and right hemisphere. The de-
viation of the actual point sets from the ideal linear trend indicates 
the deviation of the data from the normal distribution. In comparison 
with the ideal normal distribution: top row, general FD of the whole 
brain was shifted rightward with some outliers; left hemisphere was 
approximately normal as confirmed by Lilliefors normality test; right 
hemisphere consisted of a primary distribution shifted rightward and 

a smaller secondary distribution shifted leftward. Middle row, skel-
eton FD of the whole brain was shifted rightward; left hemisphere was 
approximately normal as confirmed by Lilliefors normality test; right 
hemisphere shifted rightward with some outliers. Bottom row, bound-
ary FD of the whole brain was shifted rightward with some outliers; 
left hemisphere was shifted leftward with some outliers; right hemi-
sphere was approximately normal as confirmed by Lilliefors normality 
test
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without permuting. The further the red sign from the center 
of the histogram, the lower the p-value. All FD measures 
indicated significant age-related differences for the whole 
brain as well as in each hemisphere, except for the boundary 
FD of the left hemisphere.

Figure 5b shows the same histograms when sex is assigned 
as the permutation variable. As could be understood, sex 
differences were also significant for all the features exclu-
sive of the boundaries of the whole brain. However, look-
ing into more details through Table 1 clarifies that for the 
border of the left hemisphere, although the regression coef-
ficient given for the age is significantly higher than zero, 
the regression model that is used to extract this coefficient 
poorly represents the data, as the p-value of the correlation 
coefficient between the regressed model and the real data is 
high and R2 is rather low. Hereafter, when such conflictions 
exist, we have used boldface in the tables for emphasis. In 
these tests, sex is set as a binary variable, with 0 represent-
ing men and 1 representing women. It could be understood 
from the diagrams that sex coefficient in the primary model 
is negative, indicating that men showed higher FD values 
than women. The effect of age × sex, as illustrated in Fig. 6, 
was specifically evident in the hemispheric analysis, with 
men undergoing a sharper reduction in the complexity of 
the skeleton and boundaries of the left hemisphere as well 
as the general and skeleton of the right. Women, in contrast, 
displayed an increase in the boundary FD of the right hemi-
sphere, whereas the pattern was again decreasing for men.

Table 1 elaborates the results of the analyses including 
primary regression coefficient for all independent variables, 
the significance of the differences, as well as the signifi-
cance of the fit. Columns 2–5 contain the primary regres-
sion coefficients corresponding to the age, age2, sex, and 
age × sex, respectively, with b0 showing the bias value of 
that model. Columns 6–8 include p-values to evaluate the 
statistical significance of the age, sex, and age- × sex-related 
changes of the features, and columns 9–10 contain correla-
tion coefficients and p-values to observe the goodness of the 
regressed model.

Adjusting for the Volume Effect: In the next step, we added 
the WM volume to the design matrix. When investigating 
FDs of the whole brain WM, the global WM volume was 
taken into account, whereas in the hemispheric analysis, the 
volume of the corresponding hemisphere was controlled for. 
As detailed in Table 2, all scales of the general and skeleton 
FD changed significantly with age, but for the boundar-
ies, only the whole brain indicated significant age-related 
alterations.

For the sex differences, some obvious alterations in the 
pattern appeared compared with the former analysis. Unlike 
before, higher complexities were found for the women 
except for all the features of the right hemisphere and 

In addition to investigating the statistical significance, 
we also measured the Pearson’s correlation coefficients (R) 
between the real data and the regressed model to evalu-
ate the goodness of the fit. To perform the null hypothesis 
test and check the statistical significance of R, a one-sided 
permutation test was performed assigning the values of the 
regressed model as fixed variable and permuting the real 
values of FD.

Results

Results of the evaluation of the general, skeleton, and 
boundary FD of the brain WM are reported in the following 
paragraphs. Differences due to age and sex were observed 
between the FDs of the whole brain, as well as the left and 
right hemispheres. Comparisons were made using nine fea-
ture sets (three types of FD, for whole brain and the individ-
ual hemispheres). Hence, without a correction for multiple 
comparisons, it is more likely that differences (p < 0.05) will 
be found by chance. To obtain the correct rate of false posi-
tives, we used Bonferroni criteria, yielding a significance 
threshold of 0.0056.

Akaike Information Criterion

As illustrated in Fig. 4, for the general FD, AIC detected 
a quadratic pattern for the whole brain as well as for each 
hemisphere, increasing from the young to the mid-age and 
then decreasing to the old. For the skeleton, a quartic (fourth 
degree) pattern was estimated for the whole brain and the 
left hemisphere, decreasing from 20s to the age of 30, then 
increasing until the age of 50, decreasing again to the age 
of 70, and then increasing again. The pattern for the right 
hemisphere, in contrast, was a quadratic slightly elevating 
until 40s, reducing with a steeper slope thereafter. For the 
boundaries, AIC found a zero-degree pattern, indicating that 
FDs of the boundaries do not change with age.

Permutation Test

Age as a Continuous Variable

As indicated in the previous subsection, most FD mea-
sures demonstrated nonlinear changing patterns with age. 
Therefore, for statistical analysis, we first investigated the 
effect of age, sex, and the interaction of the two, while 
controlling for nonlinear quadratic effects of the age (age, 
age2, sex, and age × sex were column vectors of the design 
matrix). Figure 5a shows the histograms for the coefficients 
corresponding to age in the regression model during ran-
dom permutation trials (i.e., the distribution under the null 
hypothesis), and the red plus sign represents the coefficient 
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correlation coefficients (all p-values < 10−4) with the WM 
volume.

Categorical Comparisons

In categorical age analysis, we classified all subjects into 
three groups of young, mid-age, and old and compared the 
age cohorts. As expected, patterns were consistent with 
those from the continuous age evaluations. As elaborated in 
Table 3, age-group effects were significant for all FD mea-
sures, with p < 0.0002, and the sex effect was significant for 
all but the whole brain boundaries. Age and sex interaction 

boundary FD of the left (for this one, the regressed model 
was poor). However, only in the boundary of the whole 
brain and general structure of the left hemisphere, the val-
ues reached significance. One other important point was that 
the right hemisphere remained significantly more complex 
in men. The effect of age × sex disclosed significant changes 
only for the hemispheric analysis except for the general FD 
of the left hemisphere.

To further evaluate the correlations between the volume 
and FD measures, we calculated correlation coefficients 
for the whole brain. General, skeleton, and boundary FD, 
respectively, disclosed 0.48, 0.558, and 0.385 positive 

Fig. 4 Patterns of changes of the general, skeleton, and boundary frac-
tal dimensions (FDs) of the whole brain and left and right hemisphere 
with age (years). The black point sets represent the actual data points; 

the solid fit curves are the polynomials as detected by Akaike Infor-
mation Criterion model selection and fitted by polyfit.m function in 
MATLAB
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Fig. 5 Results of permutation test when assigning age a and sex b as 
the randomly permuted variable (FD fractal dimension). The histo-
grams indicate the regression coefficients corresponding to the vari-
able of interest during randomization trials, and the red plus sign in-
dicates the primary coefficient corresponding to that variable (before 

permutation process). The further the plus sign from the histogram, the 
more significant the changes of the feature of interest with the variable 
of interest (i.e., age or sex). p-Values are also displayed at the top left 
corner of each plot
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Fig. 6 a Results of the permutation test when assigning age × sex as 
the randomly permuted variable. The effect of age × sex interaction 
was significant on the general fractal dimension (FD) of the right 
hemisphere, skeleton FD of all scales, and boundary FD of the two 
hemispheres. b Comparison of the linear trends of age-related changes 

of the FDs of the global and hemispheric WM between men (dashed 
curves) and women (solid curves). Men’s brains undergo more intense 
changes with aging and the slope of the trend is different between the 
two genders in the boundary FD
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Table 1 Results of the statistical analysis while treating age as a continuous variable, before controlling for the volume effect
Regression coefficients Change significance (p-value) Regression significance
b0 Age Age2 Sex Age × sex Age Sex Age × sex R2 p-value

General FD
Whole 2.546 0.0014 − 2.05 × 10−5 − 0.017 0.00017 < 10−4 < 10−4 0.327 0.116 < 10−4

Left 2.453 0.0034 − 3.86 × 10−5 − 0.006 8.3 × 10−5 < 10−4 < 10−4 0.128 0.176 < 10−4

Right 2.527 0.0023 − 3.61 × 10−5 − 0.056 0.00084 < 10−4 < 10−4 < 10−4 0.127 < 10−4

Skeleton FD
Whole 2.475 0.0017 − 2.35 × 10−5 − 0.013 0.00015 < 10−4 < 10−4 0.003 0.202 < 10−4

Left 2.214 0.0023 − 2.62 × 10−5 − 0.010 0.00022 < 10−4 < 10−4 < 10−4 0.115 < 10−4

Right 2.487 0.0018 − 2.61 × 10−5 − 0.032 0.00037 < 10−4 < 10−4 < 10−4 0.205 < 10−4

Boundary FD
Whole 2.506 0.0009 − 8.59 × 10−6 − 0.004 − 5.1 × 10−5 < 10−4 0.14 0.287 0.040 0.003
Left 2.543 1.67 × 10−5 − 2.95 × 10−6 − 0.016 0.00032 0.87 < 10−4 < 10−4 0.018 0.05
Right 2.527 0.0007 − 8.09 × 10−6 − 0.031 0.00029 < 10−4 < 10−4 < 10−4 0.179 < 10−4

FD fractal dimension

Table 2 Results of statistical analysis while considering age as a continuous variable, after controlling for the volume effect
Regression coefficients Change significance (p-value) Regression significance
b0 Age Age2 Sex Volume Age × sex Age Sex Age × sex R2 p-value

General FD
Whole 2.416 0.0005 − 8.6 × 10−6 0.0067 2.7 × 10−7 6.27 × 10−5 < 10−4 0.096 0.377 0.278 < 10−4

Left 2.334 0.0026 − 2.8 × 10−5 0.0154 5.1 × 10−7 − 8.85 × 10−6 < 10−4 < 10−4 0.836 0.446 < 10−4

Right 2.413 0.0015 − 2.6 × 10−5 − 0.035 4.7 × 10−7 0.0007 < 10−4 < 10−4 < 10−4 0.183 < 10−4

Skeleton FD
Whole 2.373 0.0010 − 1.4 × 10−5 0.006 2.1 × 10−7 6.89 × 10−5 < 10−4 0.018 0.115 0.416 < 10−4

Left 2.142 0.0018 − 1.97 × 10− 5 0.0024 3 × 10−7 0.00016 <  10−4 0.288 < 10−4 0.259 < 10−4

Right 2.329 0.0007 − 1.18 × 10− 5 − 0.003 6.5 × 10−7 0.00024 < 10−4 0.3 < 10−4 0.496 < 10−4

Boundary FD
Whole 2.441 0.0004 − 2.68 × 10−6 0.008 1.4 × 10−7 − 0.0001 < 10−4 0.0007 0.022 0.159 < 10−4

Left 2.492 − 0.0003 1.72 × 10−6 − 0.007 2.2 × 10−7 0.00028 < 10−4 0.012 < 10−4 0.075 0.0001
Right 2.434 3.7 × 10−5 3.39×10−7 − 0.014 3.8 × 10−7 0.00021 0.62 < 10−4 < 10−4 0.385 < 10−4

FD fractal dimension

Table 3 Categorical analysis of the age cohorts
Age-group P-value from the permutation test

Before volume control After volume control
Young Mid-age Old Age Sex Age × sex Age Sex Age × sex

General FD
Whole 2.56 ± 0.023 2.559 ± 0.03 2.535 ± 0.04 < 10−4 < 10−4 0.0017 < 10−4 0.4392 0.0648
Left 2.52 ± 0.018 2.527 ± 0.02 2.506 ± 0.028 < 10−4 0.0016 0.014 < 10−4 < 10−4 0.3889
Right 2.548 ± 0.045 2.545 ± 0.042 2.518 ± 0.057 < 10−4 < 10−4 < 10−4 < 10−4 0.0004 0.0001
Skeleton FD
Whole 2.5 ± 0.019 2.499 ± 0.019 2.48 ± 0.025 < 10−4 < 10−4 0.0044 < 10−4 0.0079 0.1795
Left 2.257 ± 0.016 2.263 ± 0.016 2.249 ± 0.024 < 10−4 < 10−4 < 10−4 < 10−4 0.6854 < 10−4

Right 2.504 ± 0.028 2.503 ± 0.025 2.482 ± 0.033 < 10−4 < 10−4 0.0002 < 10−4 0.1959 0.0593
Boundary FD
Whole 2.519 ± 0.022 2.525 ± 0.018 2.519 ± 0.017 < 10−4 0.1844 0.1298 < 10−4 0.0001 0.0049
Left 2.536 ± 0.025 2.537 ± 0.019 2.532 ± 0.023 0.0002 < 10−4 < 10−4 0.7605 0.0943 < 10−4

Right 2.528 ± 0.02 2.533 ± 0.021 2.528 ± 0.022 < 10−4 < 10−4 0.0001 < 10−4 < 10−4 0.0072
FD fractal dimension
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and those older than 70 years are apparent for all these six 
features/scales, except for the left hemisphere of the skel-
eton. Therefore, it seems that the general trends in our 
results are broadly similar to theirs. In the boundaries, they 
reported no notable change from the young to the old group, 
which matches what we have found. They also investigated 
sex effects and reported higher FDs in men, with signifi-
cance for the three measures in the whole brain and for the 
skeleton and surface of the right hemisphere. They reported 
no age × sex interaction. Overall, the results for the global 
analyses are approximately matching between the two stud-
ies, but in the hemispheric scale, some incongruities are 
visible. These differences between our findings and those 
of the previous study might have been raised from various 
sources, most importantly the characteristics of the popula-
tions under investigation.

In our study, the gradual-increase-sharper-decrease pat-
terns found for the general and skeleton structures may be 
related to those of the previous volumetric studies, which 
suggested that WM loss starts in late mid-age and thereafter 
progresses rapidly (for a review, see [3]). To check the rela-
tionships between our results and those of the volumetric 
analyses, we calculated the correlation coefficients between 
the whole brain WM volume and FD measures and found 
positive correlations for all the three FDs varying from 0.39 
to 0.56 as elaborated in “Results” section. Therefore, our 
age-related results are in line with the previous volumetric 
studies and demonstrate that larger WM volume is associ-
ated with more complex structure. The results also indicate 
that although volume and complexity are correlated, but 
since this correlation is not 100 %, and more importantly, 
since even after adjusting for the volume effects the age-
related variations remain meaningful, some other structural 
changes may also contribute toward decreasing FD.

An emerging concept in studying the complexity and 
connectivity of the brain structural and functional networks 
is the small-world characteristic. Previous studies demon-
strate that small-world metrics (such as clustering coeffi-
cient and path length) are mutually correlated to the network 
scale-freeness as described by fractality [25]. Small-world 
properties, together with fractality, provide an optimal orga-
nization for the brain architecture that lets it convey the 
most information with the least wiring, and this makes these 
two characteristics important in terms of evolution [26]. A 
recent study [27] evaluating the small-world characteristics 
of the structural networks of the brain in normal aging found 
an inverted U-shape age-related pattern of changes for the 
integrated global efficacy of the networks. As shown by 
that study, the efficacy of the global networks of the brain 
increases from the young (18–40 years old) to mid-age (41–
60 years old), then decreases in the elderly (61–80 years 
old), where the young group’s global efficacy was the least 
of all. The authors linked these findings to the changes in the 

was meaningful for all the measures (all p-values < 0.001), 
exclusive of the general structure of the whole brain and 
boundaries of the left hemisphere. The p-values for the bor-
der of the left hemisphere were considered invalid due to 
the poor regressed model. After controlling for the volume 
effect, associations with most features remained significant 
for age, sex, or their interaction (Table 3).

In Table 3, columns 1–3 represent mean FD ± standard 
deviation for the young, mid-age, and old, respectively; 
columns 4–5 contain p-values corresponding to the main 
effects of age and sex; and column 6 includes p-values of 
age × sex interaction, all before controlling for the volume 
effect. Columns 7–9 represent similar corresponding p-val-
ues after adjusting for the volume effect.

Discussion

In this study, age-related changes occurring in the complex-
ity of the brain WM of normal adults were investigated by 
means of FD, with higher FD showing a more complex 
structure. The changes were evaluated with two different 
approaches: a model selection criterion and a nonparamet-
ric statistical analysis. For model selection, AIC was used 
to determine the degree of the polynomial that best fits the 
data. AIC selected an inverted U-shape quadratic pattern of 
age-related changes in the general FD of the whole brain, 
as well as for each hemisphere. For the skeleton, the pat-
tern was a quartic for the whole brain and the left hemi-
sphere and a quadratic for the right. For the boundaries, AIC 
selected a constant-with-age pattern. These results indicated 
an increasing trend for FDs of the general structure and the 
skeleton from young to mid-age, then a decreasing pattern 
with a sharper slope from mid-age to the old. Permutation 
tests disclosed significant age-related changes in the whole 
brain, as well as in each hemisphere, by means of all the 
three FD measures. However, evaluating the boundaries, no 
significant change was found for the right hemisphere and 
no “good” fit for the whole brain or left hemisphere. After 
controlling for volume, the overall patterns of the general 
and skeleton FDs did not change notably.

To our knowledge, there is only one previous study that 
comprehensively investigated age- and sex-related changes 
of FD of the brain WM in normal adults [7]. The authors 
compared two groups of young (17–35 years) and old (72–
80 years) with total 36 subjects, extracting 3D FD from the 
general, skeleton, and boundaries of the whole brain as well 
as each hemisphere. Evaluating the general and skeleton 
structures, they found that FD decreases in elderly, which 
was significant for both features at a global scale but only 
for the left hemisphere of skeleton at hemispheric scale. The 
patterns found in this study, as displayed in Fig. 4, suggest 
that the differences between people younger than 35 years 
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decreased FA extracted from DTIs [3–5] and appearance 
of WMH in T2-weighted images [3, 36]. Another common 
measure for quantification of the demyelination from brain 
images has been the MTR of the WM, which is shown to 
demonstrate a nonsymmetrical inverse U-shape pattern with 
a slight increase of MTR up until mid-40s and a sharper 
decrease thereafter [37]. Overall, it is possible that this 
myelination/demyelination procedure results in genera-
tion/loss of some WM fiber crossing and bifurcations [7], 
increase/reduce the connectivity, and change the complexity 
of WM correspondingly. These findings could explain the 
curvilinear patterns that are found in this study, connecting 
WM structural complexity to the WM integrity and myelin-
ation/demyelination during evolution and aging. Compara-
tive studies between WM demyelination quantifiers and FD 
analysis could shed light on this hypothesis.

Sex dissimilarities were also examined by means of the 
three FD features (general, skeleton, and boundary FD), 
and, before correcting for the volume effect, men displayed 
significantly higher FDs (except for two features elaborated 
in Table 1). After correcting for volume effects, the patterns 
were reversed in the whole brain and the left hemisphere 
of the general and interior structure, viz. women exhibited 
higher complexities in most of the features, including all the 
three FD measures from the whole brain. According to the 
findings of [31], these results might also be related to the 
previously reported higher complexities of EEG and MEG 
signals in women [29, 38]. However, it is worthwhile noting 
that among the five of nine features that women indicated 
higher FDs for, the difference was significant only for the 
boundary FD of the whole brain and general FD of the left 
hemisphere. Thus, our results for the pre-volume-control 
are in line with the previously reported higher WM volume 
[39] and FD [7] in men. This is while our results for post-
volume-control indicates that if we remove the effect of the 
size on the FD, the general structure of the left hemisphere 
is more complex in women and the general structure of the 
right hemisphere is more complex in men. A recent study 
[40] that compared small-world characteristics of the brain 
networks between men and women found higher cluster-
ing coefficient in men’s right hemisphere and in women’s 
left hemisphere. They concluded that the left hemisphere, 
mostly associated with language tasks, is more complex/
developed in women, whereas the right hemisphere, which 
is more specified for visuotemporal tasks, is more developed 
in men. This reasoning is also in alignment with previous 
behavioral studies [41]. According to the aforementioned 
interrelationships between small-world properties and frac-
tality, our results characterizing the scale-freeness of brain 
networks are aligned with the sex differences in the brain 
lateralization as obtained from small-world analysis and 
might account for gender differences in task performances 
using a similar logic. This positive correlation between WM 

global WM and GM structure and concluded that the “matu-
rity” of the brain increases from the young to the mid-age, 
and then a “degeneration” process starts and continues to 
the elderly. Although not directly measured from the WM, 
these findings are compatible with the trends of our results 
for the WM general and interior structure, where the pattern 
was also an inverted U shape that peaked at late 40s. There-
fore, our results could relate that FD of structural brain 
images, which is a single number that is calculated with a 
fast and relatively convenient BC algorithm, could give us 
useful information about the characteristics of the complex 
structural and consequently functional [28] networks of the 
brain.

In another recent study [29], Fernández et al. also reported 
an inverted U-shape curvilinear pattern of the changes for the 
complexity of the brain Magnetoencephalography (MEG) 
oscillations with age, reaching its peak at 60s. According 
to them, power spectral measures of the brain neurophysi-
ological signals (i.e., Electroencephalography (EEG) and 
MEG) are more correlated with GM structure, and complex-
ity measures are more correlated with WM structure. Hence, 
the quadratic pattern found in our study matches the trend 
that is reported by them and could support the existence 
of an interaction between the WM structure and the brain 
functional complexity. This interpretation is generally in 
accordance with the prevalent claim of strong interactions 
between the brain function and structure [28, 30]. Moreover, 
the comparison between the results of the two studies might 
suggest that age-related changes start from the brain struc-
ture and later appear in the function. However, a combined 
functional–structural study on a single dataset is required to 
investigate this suggestion.

Furthermore, an earlier study by Fernández et al. [31] 
found a positive correlation between WM structural integrity 
and the brain’s oscillatory complexity. Basing their discus-
sion on the prevalent notion that the complexity represents 
the number of the independent oscillators of the brain [32], 
they argued that changes in the brain structures that play a 
role in the formation of the oscillators should account for 
the quadratic results obtained from their research. Accord-
ing to them, WM myelination and demyelination during 
development and aging could be the process that accounts 
for the changes in the circuitry design of the brain oscil-
lators and hence the corresponding oscillations. Besides, 
some previous studies have shown that myelination con-
tinues during childhood, adolescence, and early adulthood 
(up to the beginning of 30s) and may also continue fur-
ther [33, 34]. Moreover, recently many aging studies have 
reported decreased integrity of WM due to demyelination 
of associative fibers and/or axonal cell membrane loss, 
and consequently less connected neuronal networks in the 
elderly [4, 35]. Two of the most commonly used measures, 
which indicate decline of WM integrity in elderly, are 
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Conclusion
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our results show similarities with those that have investi-
gated small-world properties of brain networks, as well as 
those that observed functional complexity and WM integ-
rity. Although it is not clear to which of these characteristics 
FD mostly attaches, similar trends suggest that FD could 
yield a highly compact description of the structural changes, 
and might also inform us about functional and cognitive 
alterations of the brain. Sensitivity of FD to age and sex 
variations as described in this study, as well as its ability 
to diagnose neurologic/neuropsychiatric disease from the 
brain images as indicated in some of the previous studies 
[11, 12, 43], could suggest this feature as a useful tool for 
the clinical studies. Future studies directly comparing FD 
with other structural features, functional characteristics, and 
behavioral outcomes could be expected to further clarify the 
clinical interpretation of this feature.
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