35 research outputs found

    BEM Simulation and Experimental Test of a FML Full Scale Aeronautic Panel Undergoing Biaxial Static Load

    Get PDF
    This paper concerns the numerical and experimental characterization ofthe static and fatigue strength of a flat stiffened panel, designed as a fiber metal laminates (FML) and made of Aluminum alloy and Fiber Glass FRP. The panel is full scale and was tested under both static and fatigue biaxial loads, applied by means of an in house designed and built multi-axial fatigue machine. The static test is simulated by the Boundary Element Method (BEM) in a two-dimensional approach (only allowance for membrane stresses). The strain gauge outcomes are compared with corresponding numerical results, getting a satisfactory correlation. After the static test, an initial notch is created in the panel and the aforementioned biaxial fatigue load is applied, causing a crack initiation and propagation; the related experimental initiation times and crack growth rates are provided

    Cardiac hybrid imaging: novel tracers for novel targets

    Get PDF
    Non-invasive cardiac imaging has explored enormous advances in the last few decades. In particular, hybrid imaging represents the fusion of information from multiple imaging modalities, allowing to provide a more comprehensive dataset compared to traditional imaging techniques in patients with cardiovascular diseases. The complementary anatomical, functional and molecular information provided by hybrid systems are able to simplify the evaluation procedure of various pathologies in a routine clinical setting. The diagnostic capability of hybrid imaging modalities can be further enhanced by introducing novel and specific imaging biomarkers. The aim of this review is to cover the most recent advancements in radiotracers development for SPECT/CT, PET/CT, and PET/MRI for cardiovascular diseases

    Fragility Fractures of the Acetabulum: Current Concepts for Improving Patients’ Outcomes

    Get PDF
    The incidence of fragility fractures of the acetabulum (FFA) is constantly increasing. Generally, these fractures are related to a fall on the greater trochanter involving the anterior column. The management of FFA is extremely difficult considering both patients’ comorbidities and poor bone quality. Both non-operative and several operative treatment protocols are available, and the choice among them is still ambiguous. The proposed surgical techniques for FFA [namely open reduction and internal fixation (ORIF), percutaneous fixation and total hip arthroplasty (THA)] are associated with a high complication rate. The treatment with the higher early mortality is the ORIF + THA, while the one with the lowest is the non-operative. However, at longer follow-up, this difference dreadfully change is becoming the opposite. Frequently ORIF, percutaneous fixation, and non-operative treatment need a subsequent re-operation through a THA. This latter could be extremely difficult, because of poor bone quality, acetabular mal union/non-union, bone gaps and hardware retention. However, the outcomes of each of the proposed treatment are mostly poor and controverted; therefore, a comprehensive patient evaluation and an accurate fracture description are required to appropriately manage acetabular fracture in the elderly

    Advanced CMR Techniques in Anderson-Fabry Disease: State of the Art

    Get PDF
    Anderson-Fabry disease (AFD) is a rare multisystem X-linked lysosomal storage disorder caused by α-galactosidase A enzyme deficiency. Long-term cardiac involvement in AFD results in left ventricular hypertrophy and myocardial fibrosis, inducing several complications, mainly arrhythmias, valvular dysfunction, and coronary artery disease. Cardiac magnetic resonance (CMR) represents the predominant noninvasive imaging modality for the assessment of cardiac involvement in the AFD, being able to comprehensively assess cardiac regional anatomy, ventricular function as well as to provide tissue characterization. This review aims to explore the role of the most advanced CMR techniques, such as myocardial strain, T1 and T2 mapping, perfusion and hybrid imaging, as diagnostic and prognostic biomarkers

    Artificial intelligence and radiomics in magnetic resonance imaging of rectal cancer: a review

    Get PDF
    Rectal cancer (RC) is one of the most common tumours worldwide in both males and females, with significant morbidity and mortality rates, and it accounts for approximately one-third of colorectal cancers (CRCs). Magnetic resonance imaging (MRI) has been demonstrated to be accurate in evaluating the tumour location and stage, mucin content, invasion depth, lymph node (LN) metastasis, extramural vascular invasion (EMVI), and involvement of the mesorectal fascia (MRF). However, these features alone remain insufficient to precisely guide treatment decisions. Therefore, new imaging biomarkers are necessary to define tumour characteristics for staging and restaging patients with RC. During the last decades, RC evaluation via MRI-based radiomics and artificial intelligence (AI) tools has been a research hotspot. The aim of this review was to summarise the achievement of MRI-based radiomics and AI for the evaluation of staging, response to therapy, genotyping, prediction of high-risk factors, and prognosis in the field of RC. Moreover, future challenges and limitations of these tools that need to be solved to favour the transition from academic research to the clinical setting will be discussed

    Moderate-intensity statin therapy seems ineffective in primary cardiovascular prevention in patients with type 2 diabetes complicated by nephropathy:a multicenter prospective 8 years follow up study

    Get PDF
    Background: Although numerous studies and metanalysis have shown the beneficial effect of statin therapy in CVD secondary prevention, there is still controversy such the use of statins for primary CVD prevention in patients with DM. The purpose of this study was to evaluate the occurrence of total major adverse cardio-vascular events (MACE) in a cohort of patients with type 2 diabetes complicated by nephropathy treated with statins, in order to verify real life effect of statin on CVD primary prevention. Methods: We conducted an observational prospective multicenter study on 564 patients with type 2 diabetic nephropathy free of cardiovascular disease attending 21 national outpatient diabetes clinics and followed them up for 8 years. 169 of them were treated with statins (group A) while 395 were not on statins (group B). Results: Notably, none of the patients was treated with a high-intensity statin therapy according to last ADA position statement. Total MACE occurred in 32 patients from group A and in 68 patients from group B. Fatal MACE occurred in 13 patients from group A and in 30 from group B; nonfatal MACE occurred in 19 patients from group A and in 38 patients from group B. The analysis of the Kaplan-Meier survival curves showed a not statistically significant difference in the incidence of total (p 0.758), fatal (p 0.474) and nonfatal (p 0.812) MACE between the two groups. HbA1c only showed a significant difference in the incidence of MACE between the two groups (HR 1.201, CI 1.041-1.387, p 0.012). Conclusions: These findings suggest that, in a real clinical setting, moderate-intensity statin treatment is ineffective in cardiovascular primary prevention for patients with diabetic nephropathy

    Prospective validation of the CLIP score: a new prognostic system for patient with cirrhosis and hepatocellular carcinoma

    Get PDF
    Prognosis of patients with cirrhosis and hepatocellular carcinoma (HCC) depends on both residual liver function and tumor extension. The CLIP score includes Child-Pugh stage, tumor morphology and extension, serum alfa-fetoprotein (AFP) levels, and portal vein thrombosis. We externally validated the CLIP score and compared its discriminatory ability and predictive power with that of the Okuda staging system in 196 patients with cirrhosis and HCC prospectively enrolled in a randomized trial. No significant associations were found between the CLIP score and the age, sex, and pattern of viral infection. There was a strong correlation between the CLIP score and the Okuda stage, As of June 1999, 150 patients (76.5%) had died. Median survival time was 11 months, overall, and it was 36, 22, 9, 7, and 3 months for CLIP categories 0, 1, 2, 3, and 4 to 6, respectively. In multivariate analysis, the CLIP score had additional explanatory power above that of the Okuda stage. This was true for both patients treated with locoregional therapy or not. A quantitative estimation of 2-year survival predictive power showed that the CLIP score explained 37% of survival variability, compared with 21% explained by Okuda stage. In conclusion, the CLIP score, compared with the Okuda staging system, gives more accurate prognostic information, is statistically more efficient, and has a greater survival predictive power. It could be useful in treatment planning by improving baseline prognostic evaluation of patients with RCC, and could be used in prospective therapeutic trials as a stratification variable, reducing the variability of results owing to patient selection

    A Grid Computing Based Virtual Laboratory for Environmental Simulations

    No full text
    The grid computing technology permits the coordinate, efficient and effective use of (geographically spread) computational and storage resources with the aim to achieve high performance throughputs for intensive CPU load applications. In this paper we describe the development of a virtual laboratory for environmental applications. The software infrastructure, and the related interface, are developed for the straightforward use of shared and distributed observations, software, computing and storage resources. The user can design and execute his experiments building up and assembling data acquisition procedures, numerical models, and applications for the rendering of output data, with limited knowledge of grid computing, thereby focusing his attention to the application. Our solution aims at the goal of developing black-box grid applications for earth observation, marine and environmental sciences
    corecore