1,171 research outputs found

    Unveiling the Proton Spin Decomposition at a Future Electron-Ion Collider

    Get PDF
    We present a detailed assessment of how well a future Electron-Ion Collider could constrain helicity parton distributions in the nucleon and, therefore, unveil the role of the intrinsic spin of quarks and gluons in the proton's spin budget. Any remaining deficit in this decomposition will provide the best indirect constraint on the contribution due to the total orbital angular momenta of quarks and gluons. Specifically, all our studies are performed in the context of global QCD analyses based on realistic pseudo-data and in the light of the most recent data obtained from polarized proton-proton collisions at BNL-RHIC that have provided evidence for a significant gluon polarization in the accessible, albeit limited range of momentum fractions. We also present projections on what can be achieved on the gluon's helicity distribution by the end of BNL-RHIC operations. All estimates of current and projected uncertainties are performed with the robust Lagrange multiplier technique.Comment: 12 pages, 8 eps figure

    A Fiber Detector Radiation Hardness Test

    Full text link
    An intense 146 MeV/c pion beam was stopped inside a scintillating fiber detector made out of 12 planes with 16 pixels each, where every pixel consists out of 8 times 8 scintillating fibers of 500 mkm diameter dense packed. The detector was irradiated for 52 hours to more than 1 Mrad at its center. Before and directly after the irradiation the detector has been exposed to a particle beam to compare the corresponding light output. This study was continued during the following three months using cosmic rays. No damage was found taking into account the measurement errors of 5-10 %. In contrast a 9 cm deep lucite degrader became irreversibly non-transparent in the irradiation region.Comment: 16 pages, 11 figure

    Determination of electron-nucleus collision geometry with forward neutrons

    Full text link
    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. This type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider

    Probing Gluon Saturation through Dihadron Correlations at an Electron-Ion Collider

    Full text link
    Two-particle azimuthal angle correlations have been proposed to be one of the most direct and sensitive probes to access the underlying gluon dynamics involved in hard scatterings. In anticipation of an Electron-Ion Collider (EIC), detailed studies of dihadron correlation measurements in electron-proton and electron-ion collisions at an EIC have been performed. The impact of such measurements on the understanding of the different gluon distribution functions, as a clean signature for gluon saturation and to constrain saturation models further, has been explored. It is shown that dihadron correlation measurements will be one of the key methods to probe gluon saturation phenomena at a future EIC.Comment: 13 pages, 13 eps figure

    Helicity Parton Distributions at a Future Electron-Ion Collider: A Quantitative Appraisal

    Get PDF
    We present a quantitative assessment of the impact a future electron-ion collider will have on determinations of helicity quark and gluon densities and their contributions to the proton spin. Our results are obtained by performing a series of global QCD analyses at next-to-leading order accuracy based on realistic sets of pseudo-data for the inclusive and semi-inclusive deep-inelastic scattering of longitudinally polarized electrons and protons at different, conceivable center-of-mass system energies.Comment: 11 pages, 8 figure

    Predictions for Sivers single spin asymmetries in one- and two-hadron electroproduction at CLAS12 and EIC

    Get PDF
    The study of the Sivers effect, describing correlations between the transverse polarization of the nucleon and its constituent (unpolarized) parton's transverse momentum, has been the topic of a great deal of experimental, phenomenological and theoretical effort in recent years. Semi-inclusive deep inelastic scattering measurements of the corresponding single spin asymmetries (SSA) at the upcoming CLAS12 experiment at JLab and the proposed Electron-Ion Collider will help to pinpoint the flavor structure and the momentum dependence of the Sivers parton distribution function describing this effect. Here we describe a modified version of the PYTHIA\tt{PYTHIA} Monte Carlo event generator that includes the Sivers effect. Then we use it to estimate the size of these SSAs, in the kinematics of these experiments, for both one and two hadron final states of pions and kaons. For this purpose we utilize the existing Sivers parton distribution function (PDF) parametrization extracted from HERMES and COMPASS experiments. Using this modified version of PYTHIA\tt{PYTHIA}, we also show that the the leading order approximation commonly used in such extractions may provide significantly underestimated values of Sivers PDFs, as in our Monte Carlo simulations the omitted parton showers and non-DIS processes play an important role in these SSAs, for example in the COMPASS kinematics.Comment: 18 pages, 27 figures. V2: updated to version published in PRD, two references have been added and some minor changes done to the tex

    Reply to Comment on "Reevaluation of the parton distribution of strange quarks in the nucleon"

    Full text link
    A Comment on the recently published reevaluation of the polarization-averaged parton distribution of strange quarks in the nucleon using final data on the multiplicities of charged kaons in semi-inclusive deep-inelastic scattering is reviewed. Important features of the comparison of one-dimensional projections of the multidimensional HERMES data are pointed out. A test of the leading-order extraction of xS(x) using the difference between charged-kaon multiplicities is repeated. The results are consistent with leading-order predictions within the uncertainties in the input data, and do not invalidate the earlier extraction of xS(x).Comment: Reply Comment to arXiv:1407.372
    • …
    corecore