622 research outputs found

    Silver Photodiffusion into Ge-Rich Amorphous Germanium Sulfide—Neutron Reflectivity Study

    Get PDF
    Silver diffuses into chalcogenide films upon light exposure, and the kinetics of photodiffusion has been a subject of various investigations because of the difficulties in the in situ determination of the time-dependent Ag reaction and diffusion development in the chalcogenide layers. In this paper, we report the results of time-resolved neutron reflectivity measurement of Ag/Ge40S60/Si substrates under light exposure to clarify the kinetics of Ag photodiffusion into Ge-rich Ge chalcogenides. It reveals that Ag ions diffuse all over the Ge chalcogenide host layer once Ag dissolves into the layer without forming a metastable reaction layer unlike the case of S-rich Ge chalcogenide such as Ge20S80. The decay curve suggests that the Ag dissolution is determined by two types of Ag capturing chalcogen sites. Also, the observed relaxation time showed anomalous chalcogenide layer thickness dependence. This is attributed to an additional diffusion-driven accelerating factor, which is unique to the silver photodiffusion. Furthermore, we observed indicative changes in the formation of an inhomogeneous in-plane structure at the Ag/chalcogenide interface. This would be related to the nucleation and growth of the Ag-dissolved reaction product

    Theoretical study of kinks on screw dislocation in silicon

    Full text link
    Theoretical calculations of the structure, formation and migration of kinks on a non-dissociated screw dislocation in silicon have been carried out using density functional theory calculations as well as calculations based on interatomic potential functions. The results show that the structure of a single kink is characterized by a narrow core and highly stretched bonds between some of the atoms. The formation energy of a single kink ranges from 0.9 to 1.36 eV, and is of the same order as that for kinks on partial dislocations. However, the kinks migrate almost freely along the line of an undissociated dislocation unlike what is found for partial dislocations. The effect of stress has also been investigated in order to compare with previous silicon deformation experiments which have been carried out at low temperature and high stress. The energy barrier associated with the formation of a stable kink pair becomes as low as 0.65 eV for an applied stress on the order of 1 GPa, indicating that displacements of screw dislocations likely occur via thermally activated formation of kink pairs at room temperature

    Measurements of Atmospheric Antiprotons

    Full text link
    We measured atmospheric antiproton spectra in the energy range 0.2 to 3.4 GeV, at sea level and at balloon altitude in the atmospheric depth range 4.5 to 26 g/cm^2. The observed energy spectra, including our previous measurements at mountain altitude, were compared with estimated spectra calculated on various assumptions regarding the energy distribution of antiprotons that interacted with air nuclei.Comment: Accepted for publication in PL

    Observation of Galactic Sources of Very High Energy Gamma-Rays with the MAGIC Telescope

    Get PDF
    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy gamma-radiation in the energy band between about 50 GeV and 10 TeV. Since the autumn of 2004 MAGIC has been taking data routinely, observing various objects, like supernova remnants (SNRs), gamma-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results of observations of Galactic Sources.Comment: Brief Review, to be pulished in: Mod. Phys. Lett.

    Asymmetric Patterns of Visual Field Defect in Primary Open-Angle and Primary Angle-Closure Glaucoma

    Get PDF
    Purpose: To compare the hemifield asymmetry of visual field (VF) loss in primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG) across all severity levels. Methods: A total of 522 eyes of 327 patients with POAG (mean age ± SD, 54.1 ± 12.4 years) and 375 eyes of 204 patients with PACG (67.3 ± 8.9 years) were included. Subjects meeting the definitions of POAG or PACG were included. Means of the total deviation (TD) values (Humphrey 24-2 VF) in the Glaucoma Hemifield Test (GHT) regions were calculated in early (≥ −6 dB), moderate (< −6 dB and ≥ −12 dB), and advanced (< −12 dB) stages of POAG and PACG eyes. Then the differences of the TD values between superior and inferior hemifield GHT regions of POAG and PACG eyes were calculated. Also, the relationship between the values of pattern SD (PSD) and mean TD (mTD) was compared between POAG and PACG. Results: In POAG eyes in the early stage, three regions (central, paracentral, and peripheral) in the superior hemifield had greater loss than their inferior counterparts; in moderate and advanced stages, all GHT regions in the superior hemifield had greater loss than their inferior counterparts. In PACG eyes, siginificantly fewer regions in the superior hemifield were significantly worse than their inferior counterpart, compared with POAG: one region (central) in early stage, two regions (central and peripheral) in moderate stage, and one region (central) in advanced stage. POAG eyes had greater PSD values than PACG eyes for given mean of TD values. Conclusions: In both POAG and PACG eyes, VF damage was more pronounced in superior hemifield than inferior hemifield; however, this tendency was more obvious in POAG eyes than in PACG eyes

    Measurements of 0.2 to 20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer

    Get PDF
    We measured low energy cosmic-ray proton and helium spectra in the kinetic energy range 0.215 - 21.5 GeV/n at different solar activities during a period from 1997 to 2002. The observations were carried out with the BESS spectrometer launched on a balloon at Lynn Lake, Canada. A calculation for the correction of secondary particle backgrounds from the overlying atmosphere was improved by using the measured spectra at small atmospheric depths ranging from 5 through 37 g/cm^2. The uncertainties including statistical and systematic errors of the obtained spectra at the top of atmosphere are 5-7 % for protons and 6-9 % for helium nuclei in the energy range 0.5 - 5 GeV/n.Comment: 27 pages, 7 Tables, 9 figures, Submitted to Astroparticle Physic

    Measurements of Proton, Helium and Muon Spectra at Small Atmospheric Depths with the BESS Spectrometer

    Full text link
    The cosmic-ray proton, helium, and muon spectra at small atmospheric depths of 4.5 -- 28 g/cm^2 were precisely measured during the slow descending period of the BESS-2001 balloon flight. The variation of atmospheric secondary particle fluxes as a function of atmospheric depth provides fundamental information to study hadronic interactions of the primary cosmic rays with the atmosphere.Comment: 21 pages, 11 figures, 4 table

    Discovery of an Ultra-fast X-ray Pulsar in the Supernova Remnant N157B

    Get PDF
    We present the serendipitous discovery of 16 ms pulsed X-ray emission from the Crab-like supernova remnant N157B in the Large Magellanic Cloud. This is the fastest spinning pulsar associated with a supernova remnant (SNR). Observations with the Rossi X-ray Timing Explorer (RXTE), centered on the field containing SN1987A, reveal an X-ray pulsar with a narrow pulse profile. Archival ASCA X-ray data confirm this detection and locate the pulsar within 1' of the supernova remnant N157B, 14' from SN1987A. The pulsar manifests evidence for glitch(es) between the RXTE and ASCA observations which span 3.5 years; the mean linear spin-down rate is Pdot = 5.126 X 10E-14 s/s. The background subtracted pulsed emission is similar to other Crab-like pulsars with a power law of photon index of ~ 1.6. The characteristic spin-down age (~ 5000 years) is consistent with the previous age estimate of the SNR. The inferred B-field for a rotationally powered pulsar is ~ 1 X 10E12 Gauss. Our result confirms the Crab-like nature of N157B; the pulsar is likely associated with a compact X-ray source revealed by ROSAT HRI observations.Comment: 9 pages with 3 eps figure, LaTex (aas2pp2, psfig). Submitted to the Astrophysical Journal Letter
    corecore