24 research outputs found

    Photolysis of Fluorinated Graphites with Embedded Acetonitrile Using a White-Beam Synchrotron Radiation

    Get PDF
    Fluorinated graphitic layers with good mechanical and chemical stability, polar C–F bonds, and tunable bandgap are attractive for a variety of applications. In this work, we investigated the photolysis of fluorinated graphites with interlayer embedded acetonitrile, which is the simplest representative of the acetonitrile-containing photosensitizing family. The samples were continuously illuminated in situ with high-brightness non-monochromatized synchrotron radiation. Changes in the compositions of the samples were monitored using X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NEXAFS N K-edge spectra showed that acetonitrile dissociates to form HCN and N2 molecules after exposure to the white beam for 2 s, and the latter molecules completely disappear after exposure for 200 s. The original composition of fluorinated matrices CF0.3 and CF0.5 is changed to CF0.10 and GF0.17, respectively. The highly fluorinated layers lose fluorine atoms together with carbon neighbors, creating atomic vacancies. The edges of vacancies are terminated with the nitrogen atoms and form pyridinic and pyrrolic units. Our in situ studies show that the photolysis products of acetonitrile depend on the photon irradiation duration and composition of the initial CFx matrix. The obtained results evaluate the radiation damage of the acetonitrile-intercalated fluorinated graphites and the opportunities to synthesize nitrogen-doped graphene materials

    Effect of Hydrogen Fluoride Addition and Synthesis Temperature on the Structure of Double-Walled Carbon Nanotubes Fluorinated by Molecular Fluorine

    Get PDF
    Double‐walled carbon nanotubes (DWCNTs) have been fluorinated by pure molecular fluorine (F2) at room temperature or 200 °C and a mixture of F2 with hydrogen fluoride (HF) at 200 °C that resulted in products with compositions of CF0.12, CF0.39, and CF0.53 as determined by X‐ray photoelectron spectroscopy. The differences in the structures of three kinds of fluorinated DWCNTs were revealed using transmission electron microscopy, Raman scattering, and near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy. Quantum‐chemical modeling of the NEXAFS F K‐edge spectra detected a change in the fluorine pattern with the increase of the F2 treatment temperature. The presence of HF in fluorine gas was found to accelerate the fluorination process and cause a partial destruction of outer shells of the DWCNT

    Thermal Decomposition of Co-Doped Calcium Tartrate and Use of the Products for Catalytic Chemical Vapor Deposition Synthesis of Carbon Nanotubes.

    Get PDF
    Thermal decomposition of Co-doped calcium tartrate in an inert atmosphere or air was studied using thermogravimetric analysis and X-ray absorption fine structure (XAFS) spectroscopy. It was shown that the powder substance containing 4 at.% of cobalt completely decomposes within 650-730 °C, depending on the environment, and the formation of Co clusters does not proceed before 470 °C. The products of decomposition were characterized by transmission electron microscopy, XAFS, and X-ray photoelectron spectroscopy. Surfaceoxidized Co metal nanoparticles as large as ∼5.6 ( 1.2 nm were found to form in an inert atmosphere, while the annealing in air led to a wide distribution of diameters of the nanoparticles, with the largest nanoparticles (30-50 nm) mainly present as a Co3O4 phase. It was found that the former nanoparticles catalyze the growth of CNTs from alcohol while a reducing atmosphere is required for activation of the latter nanoparticles. We propose the scheme of formation of CaO-supported catalyst from Co-doped tartrate, depending on the thermal decomposition conditions

    Nano TiO2 and Molybdenum/Tungsten Iodide Octahedral Clusters: Synergism in UV/Visible-Light Driven Degradation of Organic Pollutants

    No full text
    Emissions of various organic pollutants in the environment becomes a more and more acute problem in the modern world as they can lead to an ecological disaster in foreseeable future. The current situation forces scientists to develop numerous methods for the treatment of polluted water. Among these methods, advanced photocatalytic oxidation is a promising approach for removing organic pollutants from wastewater. In this work, one of the most common photocatalysts—titanium dioxide—was obtained by direct aqueous hydrolysis of titanium (IV) isopropoxide and impregnated with aqueous solutions of octahedral cluster complexes [{M6I8}(DMSO)6](NO3)4 (M = Mo, W) to overcome visible light absorption issues and increase overall photocatalytic activity. XRPD analysis showed that the titania is formed as anatase-brookite mixed-phase nanoparticles and cluster impregnation does not affect the morphology of the particles. Complex deposition resulted in the expansion of the absorption up to ~500 nm and in the appearance of an additional cluster-related band gap value of 1.8 eV. Both types of materials showed high activity in the photocatalytic decomposition of RhB under UV- and sunlight irradiation with effective rate constants 4–5 times higher than those of pure TiO2. The stability of the catalysts is preserved for up to 5 cycles of photodegradation. Scavengers’ experiments revealed high impact of all of the active species in photocatalytic process indicating the formation of an S-scheme heterojunction photocatalyst

    Optical Properties of Tricarboxylic Acid-Derived Carbon Dots

    No full text
    Herein, we report the characterization of two types of luminescent carbon dots (CDs) synthesized by the hydrothermal treatment of citric acid and trans-aconitic acid by using ammonia solution as a nitrogen dopant. The lateral size range of nanoparticles for CDs lies in the range of 3–15 nm. The intense blue photoluminescence (PL) was emitted by the CDs at around 409–435 nm under the excitation of 320 nm. The PL quantum yield of the synthesized CDs ranged from 26.4 to 51%. Our results of the structural and optical properties of CDs imply that molecular fluorophores are an important part of the structure; in particular, the main contribution to the PL is carried by the fluorophores based on citrazinic acid derivatives, which formed during the synthesis of CDs

    Effects of the Carbon Support Doping with Nitrogen for the Hydrogen Production from Formic Acid over Ni Catalysts

    No full text
    Porous nitrogen-doped and nitrogen-free carbon materials possessing high specific surface areas (400–1000 m2 g−1) were used for deposition of Ni by impregnation with nickel acetate followed by reduction. The nitrogen-doped materials synthesized by decomposition of acetonitrile at 973, 1073, and 1173 K did not differ much in the total content of incorporated nitrogen (4–5 at%), but differed in the ratio of the chemical forms of nitrogen. An X-ray photoelectron spectroscopy study showed that the rise in the synthesis temperature led to a strong growth of the content of graphitic nitrogen on the support accompanied by a reduction of the content of pyrrolic nitrogen. The content of pyridinic nitrogen did not change significantly. The prepared nickel catalysts supported on nitrogen-doped carbons showed by a factor of up to two higher conversion of formic acid as compared to that of the nickel catalyst supported on the nitrogen-free carbon. This was related to stabilization of Ni in the state of single Ni2+ cations or a few atoms clusters by the pyridinic nitrogen sites. The nitrogen-doped nickel catalysts possessed a high stability in the reaction at least within 5 h and a high selectivity to hydrogen (97%)

    Effect of Toluene Addition in an Electric Arc on Morphology, Surface Modification, and Oxidation Behavior of Carbon Nanohorns and Their Sedimentation in Water

    No full text
    Carbon nanohorns (CNHs) are attractive for various applications, where a high specific surface area and long dispersion stability in water are important. In the present work, we study these parameters of CNHs prepared by arc evaporation of graphite depending on the conditions of the synthesis and subsequent oxidation in air. It is shown that the addition of toluene in the reactor during the arcing allows obtaining CNHs functionalized with −CHx groups. Heating of CNHs in air at 400 °C leads to substitution of −CHx groups for oxygen-containing groups. Moreover, the CNH endcaps are opened at 500 °C, and as a result, the specific surface area of CNHs increases 4 times. Aqueous suspensions with a concentration of oxidized CNHs of 100 µg/mL are stable for 8 months

    Anisotropy of Chemical Bonding in Semifluorinated Graphite C<sub>2</sub>F Revealed with Angle-Resolved X‑ray Absorption Spectroscopy

    No full text
    Highly oriented pyrolytic graphite characterized by a low misorientation of crystallites is fluorinated using a gaseous mixture of BrF<sub>3</sub> with Br<sub>2</sub> at room temperature. The golden-colored product, easily delaminating into micrometer-size transparent flakes, is an intercalation compound where Br<sub>2</sub> molecules are hosted between fluorinated graphene layers of approximate C<sub>2</sub>F composition. To unravel the chemical bonding in semifluorinated graphite, we apply angle-resolved near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and quantum-chemical modeling. The strong angular dependence of the CK and FK edge NEXAFS spectra on the incident radiation indicates that room-temperature-produced graphite fluoride is a highly anisotropic material, where half of the carbon atoms are covalently bonded with fluorine, while the rest of the carbon atoms preserve π electrons. Comparison of the experimental CK edge spectrum with theoretical spectra plotted for C<sub>2</sub>F models reveals that fluorine atoms are more likely to form chains. This conclusion agrees with the atomic force microscopy observation of a chain-like pattern on the surface of graphite fluoride layers

    Chemiresistive Properties of Imprinted Fluorinated Graphene Films

    No full text
    The electrical conductivity of graphene materials is strongly sensitive to the surface adsorbates, which makes them an excellent platform for the development of gas sensor devices. Functionalization of the surface of graphene opens up the possibility of adjusting the sensor to a target molecule. Here, we investigated the sensor properties of fluorinated graphene films towards exposure to low concentrations of nitrogen dioxide NO2. The films were produced by liquid-phase exfoliation of fluorinated graphite samples with a composition of CF0.08, CF0.23, and CF0.33. Fluorination of graphite using a BrF3/Br2 mixture at room temperature resulted in the covalent attachment of fluorine to basal carbon atoms, which was confirmed by X-ray photoelectron and Raman spectroscopies. Depending on the fluorination degree, the graphite powders had a different dispersion ability in toluene, which affected an average lateral size and thickness of the flakes. The films obtained from fluorinated graphite CF0.33 showed the highest relative response ca. 43% towards 100 ppm NO2 and the best recovery ca. 37% at room temperature
    corecore