12 research outputs found

    Simultaneous dual true random numbers generator

    No full text
    This paper details the design and implementation of a simultaneous dual true random numbers generator using only one laser and a digital signal processing system with a DE0 Nano FPGA. We implemented the random generator in such a way that a vacuum optical field will exist in our system. Taking advantage of the inherently random nature of the field, simultaneously quadrature components are measured in order to generate a truly random voltage signal. Also, we used a dynamical system of statistical analysis to eliminate any residual component of direct current on output voltage signal due to an (unavoidable) optical power imbalance in the optical system that was implemented. Finally, were measured the parameters of the auto-correlation and bias probability with values of 0.00010, 0002, respectively, which means that our system can be considered as a true random sequence generator capable of producing two sequences in an independent manner with a bit rate of up to 25 MHz

    Simultaneous dual true random numbers generator

    Get PDF
    This paper details the design and implementation of a simultaneous dual true random numbers generator using only one laser and a digital signal processing system with a DE0 Nano FPGA. We implemented the random generator in such a way that a vacuum optical field will exist in our system. Taking advantage of the inherently random nature of the field, simultaneously quadrature components are measured in order to generate a truly random voltage signal. Also, we used a dynamical system of statistical analysis to eliminate any residual component of direct current on output voltage signal due to an (unavoidable) optical power imbalance in the optical system that was implemented. Finally, were measured the parameters of the auto-correlation and bias probability with values of 0.00010, 0002, respectively, which means that our system can be considered as a true random sequence generator capable of producing two sequences in an independent manner with a bit rate of up to 25 MHz

    Simultaneous dual true random numbers generator

    No full text
    This paper details the design and implementation of a simultaneous dual true random numbers generator using only one laser and a digital signal processing system with a DE0 Nano FPGA. We implemented the random generator in such a way that a vacuum optical field will exist in our system. Taking advantage of the inherently random nature of the field, simultaneously quadrature components are measured in order to generate a truly random voltage signal. Also, we used a dynamical system of statistical analysis to eliminate any residual component of direct current on output voltage signal due to an (unavoidable) optical power imbalance in the optical system that was implemented. Finally, were measured the parameters of the auto-correlation and bias probability with values of 0.00010, 0002, respectively, which means that our system can be considered as a true random sequence generator capable of producing two sequences in an independent manner with a bit rate of up to 25 MHz.Se presenta el diseño e implementación de un generador dual simultáneo de números verdaderamente aleatorios usando solamente un láser y un sistema de procesamiento digital de señales con FPGA Nano DE0. Implementamos el generador aleatorio de manera que exista un campo óptico de vacío en el sistema; aprovechando la naturaleza inherentemente aleatoria del campo, se miden simultáneamente sus componentes en cuadratura para generar una señal de voltaje verdaderamente aleatoria. Usamos un sistema dinámico de análisis estadístico cuyo objetivo es eliminar cualquier componente residual de corriente continua en la señal de voltaje, ocasionado por un (inevitable) desequilibrio de potencia óptica en el sistema óptico implementado. Se obtuvieron valores de los parámetros de la auto-correlación y el offset de probabilidad de 0,0001 y 0,0002, respectivamente, concluyendo que el sistema puede ser considerado como un verdadero generador de dos secuencias independientes aleatorias a una velocidad de transmisión de hasta 25 MHz

    Microwave and optical technology letters

    No full text
    We present the development and characterization of a simulation module in the temporal domain for optical atmospheric links affected by optical turbulence with Gamma‐Gamma probability density function. We generate time series for different turbulence levels, from weak to strong, to simulate the effect produced by the atmospheric optical channel over an optical carrier with binary‐modulated intensity. We added at the photoreceiver stage a time‐domain amplitude noise from a real‐world component. We carried out performance evaluation of the simulated links through eye pattern diagrams making a qualitative comparison of the waveforms obtained in some of our simulations with waveforms acquired in our long‐distance atmospheric optical links. Our module allows carrying out in a simple way the design and the characterization in the time domain by simulation models of optical links for atmospheric optical communications. Including parameters of physical components, we can obtain results closer to those obtained in the real world.Microwave and optical technology lettershttps://doi.org/10.1002/mop.3246

    Revista Mexicana de Física

    Get PDF
    In this paper, a dynamical and adaptive LDPC coding scheme is proposed in order to improve the performance of the cryptographic key distillation protocol of an FSO/CV-QKD system considering the atmospheric turbulence levels that may be present in the classic channel. In this scheme, the Generator and Parity-check matrices of the encoder are modified according to the Rytov variance values estimated in the classical channel in order to improve the final secret key rate of the QKD system. The simulation results show that the final secret key was incremented 87.5 Kbps (from 52.5 Kbps to 140 Kbps) using the adaptive code rate; meaning that the information encrypted and transmitted is increased. In addition, the use of the dynamical encoder avoids the drastically reduction of the final secret key rate when the conditions of the classical channel are considered. Our proposal might be implemented based on the use of high-speed FPGA’s and DSP’s commercially available.Revista Mexicana de Físicahttps://rmf.smf.mx/pdf/rmf/63/3/63_3_268.pd

    Revista mexicana de física

    Get PDF
    In this paper, an adaptive low density parity check (LDPC). encoder for complete Free Space Optics/Continuous Variable-Quantum Key Distribution (FSO/CV-QKD) system using a Commercially available Off-The-Shelf (COTS) device for emulated dynamical atmospheric turbulence levels is presented. The experimental and emulation results show the maximum and minimal final secret key rates of ≈ 105 Kbps and ≈ 10 Kbps, respectively, for minimal and maximal throughput in a commercial network, 30 Mbps and 90 Mbps, respectively. Our proposal presents an adequate performance for weak and moderate atmospheric turbulence levels and a suitable option for improving the use of Quantum Key Distribution (QKD) systems.Revista mexicana de físicahttps://rmf.smf.mx/ojs/rmf/article/view/18

    Optica Applicata Journal

    No full text
    A continuous variable-quantum key distribution system prototype that uses weak coherent states with a diffused phase, commercial off-the-shelf devices, complete free space 90-degrees hybrid and simplified quantum protocol is proposed in this paper. In general, the quantum transmitter-re- ceiver shows an experimental average quantum bit error rate of 30% using auto-homodyne detec- tion with 0.25 photons per pulse in locking phase mode. The emulated final secret key rate measurements were 20 and 40 Kbps for minimum (30 Mbps) and maximum (90 Mbps) throughput, respectively, in a real traffic network using databases for the quantum keys generated by two true random number generators.Optica Applicata JournalDOI: 10.5277/oa17030

    Desarrollo de un Sistema de Comunicaciones Ópticas Clásicas en Espacio Libre con Aplicación en Comunicaciones Cuánticas

    No full text
    Actualmente los enlaces ópticos en espacio libre tienen diversas aplicaciones (algunas comerciales y otras en desarrollo) tales como: a) enlaces horizontales de comunicaciones dentro de la misma capa de la atmósfera terrestre (denominados enlaces FSO por sus siglas en inglés “free space optics”) permanentes o temporales (para situaciones de emergencia) de corta distancia para comunicación entre edificios (Fsona, 2014) , y comunicación de alta velocidad en redes personales de área local óptica inalámbrica (Wang, K., et al, 2011), b) enlaces verticales (denominados generalmente sistemas LASERCOM) para comunicación entre aviones y satélites, entre satélites en diferentes órbitas (Chan, V., 2003), de satélites a estaciones terrenas y viceversa (operando en diversas capas de la atmósfera terrestre o en el espacio profundo (Hemmati, H., 2006)), c) conexión óptica inalámbrica de alta velocidad entre tarjetas de circuito impreso (por ejemplo para distribución de señales de reloj dentro de un satélite y/o para interconectar ductos y microprocesadores sin interferencia electromagnética (Savage, N., 2002)). El desarrollo de enlaces ópticos para comunicación de tierra hacia y desde el espacio ha sido y es de gran interés para diversas agencias espaciales alrededor del mundo (JAXA, 2009), en particular, el sistema satelital europeo SILEX es un ejemplo de su aplicación (ESA, 2014); además, la NASA puso en funcionamiento en septiembre de 2013 la misión “Lunar Laser Communication Demonstration”, cuyo objetivo principal es demostrar la confiabilidad de la comunicación óptica entre una estación situada en órbita lunar y estaciones terrenas en nuestro planeta (NASA,2014). Generalmente los enlaces arriba mencionados son “clásicos” (operando con un relativamente alto número de fotones por período de observación), pero, recientemente ha crecido el interés en desarrollar sistemas de comunicaciones “cuánticos” (con bajo número de fotones por período de observación) (Hemmati, H. et al, 2012). Para estos sistemas pueden emplearse diversos “estados cuánticos”, (cuyas propiedades han sido y son investigadas por diversos grupos de científicos alrededor del mundo (Becerra, F.E., et al, 2013)), entre otros, los “estados entrelazados” (Ma, X., et al, 2012), o los “estados débiles coherentes” (WCS)..
    corecore