16 research outputs found

    Ozone loss derived from balloon-borne tracer measurements in the 1999/2000 Arctic winter

    Get PDF
    Balloon-borne measurements of CFC11 (from the DIRAC in situ gas chromatograph and the DESCARTES grab sampler), ClO and O3 were made during the 1999/2000 Arctic winter as part of the SOLVE-THESEO 2000 campaign, based in Kiruna (Sweden). Here we present the CFC11 data from nine flights and compare them first with data from other instruments which flew during the campaign and then with the vertical distributions calculated by the SLIMCAT 3D CTM. We calculate ozone loss inside the Arctic vortex between late January and early March using the relation between CFC11 and O3 measured on the flights. The peak ozone loss (~1200ppbv) occurs in the 440-470K region in early March in reasonable agreement with other published empirical estimates. There is also a good agreement between ozone losses derived from three balloon tracer data sets used here. The magnitude and vertical distribution of the loss derived from the measurements is in good agreement with the loss calculated from SLIMCAT over Kiruna for the same days

    Statistics of high-altitude and high-latitude O<sup>+</sup> ion outflows observed by Cluster/CIS

    No full text
    The persistent outflows of O+ ions observed by the Cluster CIS/CODIF instrument were studied statistically in the high-altitude (from 3 up to 11 RE) and high-latitude (from 70 to ~90 deg invariant latitude, ILAT) polar region. The principal results are: (1) Outflowing O+ ions with more than 1keV are observed above 10 RE geocentric distance and above 85deg ILAT location; (2) at 6-8 RE geocentric distance, the latitudinal distribution of O+ ion outflow is consistent with velocity filter dispersion from a source equatorward and below the spacecraft (e.g. the cusp/cleft); (3) however, at 8-12 RE geocentric distance the distribution of O+ outflows cannot be explained by velocity filter only. The results suggest that additional energization or acceleration processes for outflowing O+ ions occur at high altitudes and high latitudes in the dayside polar region. Keywords. Magnetospheric physics (Magnetospheric configuration and dynamics, Solar wind-magnetosphere interactions

    Characteristics of high altitude oxygen ion energization and outflow as observed by Cluster: a statistical study

    Get PDF
    The results of a statistical study of oxygen ion outflow using Cluster data obtained at high altitude above the polar cap is reported. Moment data for both hydrogen ions (H+) and oxygen ions (O+) from 3 years (2001-2003) of spring orbits (January to May) have been used. The altitudes covered were mainly in the range 5&ndash;12 RE geocentric distance. It was found that O+ is significantly transversely energized at high altitudes, indicated both by high perpendicular temperatures for low magnetic field values as well as by a tendency towards higher perpendicular than parallel temperature distributions for the highest observed temperatures. The O+ parallel bulk velocity increases with altitude in particular for the lowest observed altitude intervals. O+ parallel bulk velocities in excess of 60 km s-1 were found mainly at higher altitudes corresponding to magnetic field strengths of less than 100 nT. For the highest observed parallel bulk velocities of O+ the thermal velocity exceeds the bulk velocity, indicating that the beam-like character of the distribution is lost. The parallel bulk velocity of the H+ and O+ was found to typically be close to the same throughout the observation interval when the H+ bulk velocity was calculated for all pitch-angles. When the H+ bulk velocity was calculated for upward moving particles only the H+ parallel bulk velocity was typically higher than that of O+. The parallel bulk velocity is close to the same for a wide range of relative abundance of the two ion species, including when the O+ ions dominates. The thermal velocity of O+ was always well below that of H+. Thus perpendicular energization that is more effective for O+ takes place, but this is not enough to explain the close to similar parallel velocities. Further parallel acceleration must occur. The results presented constrain the models of perpendicular heating and parallel acceleration. In particular centrifugal acceleration of the outflowing ions, which may provide the same parallel velocity increase to the two ion species and a two-stream interaction are discussed in the context of the measurements

    Ozone loss derived from balloon-borne tracer measurements in the 1999/2000 Arctic winter

    No full text
    Balloon-borne measurements of CFC11 (from the DIRAC in&nbsp;situ gas chromatograph and the DESCARTES grab sampler), ClO and O3 were made during the 1999/2000 Arctic winter as part of the SOLVE-THESEO 2000 campaign, based in Kiruna (Sweden). Here we present the CFC11 data from nine flights and compare them first with data from other instruments which flew during the campaign and then with the vertical distributions calculated by the SLIMCAT 3D CTM. We calculate ozone loss inside the Arctic vortex between late January and early March using the relation between CFC11 and O3 measured on the flights. The peak ozone loss (~1200ppbv) occurs in the 440-470K region in early March in reasonable agreement with other published empirical estimates. There is also a good agreement between ozone losses derived from three balloon tracer data sets used here. The magnitude and vertical distribution of the loss derived from the measurements is in good agreement with the loss calculated from SLIMCAT over Kiruna for the same days
    corecore