150 research outputs found

    Using cultural probes to inform the design of assistive technologies

    Get PDF
    This paper discusses the practical implications of applying cultural probes to drive the design of assistive technologies. Specifically we describe a study in which a probe was deployed with home-based carers of people with dementia in order to capture critical data and gain insights of integrating the technologies into this sensitive and socially complex design space. To represent and utilise the insights gained from the cultural probes, we created narratives based on the probe data to enhance the design of assistive technologies.This work was supported by the Arts and Humanities Research Council (AH/K00266X/1) and RCUK through the Horizon Digital Economy Research grant (EP/G065802/1)

    Fuzzy and IRLNC-based routing approach to improve data storage and system reliability in IoT

    Get PDF
    Internet of Things (IoT) based sensor network is largely utilized in various field for transmitting huge amount of data due to their ease and cheaper installation. While performing this entire process, there is a high possibility for data corruption in the mid of transmission. On the other hand, the network performance is also affected due to various attacks. To address these issues, an efficient algorithm that jointly offers improved data storage and reliable routing is proposed. Initially, after the deployment of sensor nodes, the election of the storage node is achieved based on a fuzzy expert system. Improved Random Linear Network Coding (IRLNC) is used to create an encoded packet. This encoded packet from the source and neighboring nodes is transmitted to the storage node. Finally, to transmit the encoded packet from the storage node to the destination shortest path is found using the Destination Sequenced Distance Vector (DSDV) algorithm. Experimental analysis of the proposed work is carried out by evaluating some of the statistical metrics. Average residual energy, packet delivery ratio, compression ratio and storage time achieved for the proposed work are 8.8%, 0.92%, 0.82%, and 69 s. Based on this analysis, it is revealed that better data storage system and system reliability is attained using this proposed work

    Infrared Thermal Images of Solar PV Panels for Fault Identification Using Image Processing Technique

    Get PDF
    Among the renewable forms of energy, solar energy is a convincing, clean energy and acceptable worldwide. Solar PV plants, both ground mounting and the rooftop, are mushrooming thought the world. One of the significant challenges is the fault identification of the solar PV module, since a vast power plant condition monitoring of individual panels is cumbersome. This paper attempts to identify the panel using a thermal imaging system and processes the thermal images using the image processing technique. An ordinary and thermal image has been processed in the image processing tool and proved that thermal images record the hot spots. Similarly, the new and aged solar photovoltaic panels were compared in the image processing technique since any fault in the panel has been recorded as hot spots. The image recorded in the aged panels records hot spots, and performance has been analyzed using conventional metrics. The experimental results have also been verified

    Design and Development of Defect Rich Titania Nanostructure for Efficient Electrocatalyst for Hydrogen Evolution Reaction in an Acidic Electrolyte

    Full text link
    Cost-effective, efficient and stable electrocatalyst for water splitting in the acidic electrolyte medium has been developed. The acidic electrolyte could be a support for the high purity hydrogen production via water splitting. Accordingly, we have prepared the defect-rich titania nanostructure via electrochemical anodization and cathodization routes using the titanium plate, which showed highly effective and durable electrocatalyst of hydrogen evolution reaction (HER) in an acidic medium. This hybrid compound showed a low onset potential of −0.17 V for HER with a current density of −150 mA cm−2 in 1 M H2SO4. Moreover, the stability test has been performed with the defect-rich titania nanostructure as cathode for 6 h in the two electrodes system. © 2021 The Author(s).The authors extend their appreciation to the Deanship of Scientific Research, King Saud University for funding this work through Research Group no RG-1441-043 and funded by the Taif University Researchers Supporting Project number (TURSP-2020/04), Taif University, Taif, Saudi Arabia. One of the author Dr G. Murugadoss would like to thank Chancellor, President and Vice Chancellor, Sathyabama Institute of Science and Technology, Chennai for providing lab facilities and encouragement

    HIPPIE: Integrating Protein Interaction Networks with Experiment Based Quality Scores

    Get PDF
    Protein function is often modulated by protein-protein interactions (PPIs) and therefore defining the partners of a protein helps to understand its activity. PPIs can be detected through different experimental approaches and are collected in several expert curated databases. These databases are used by researchers interested in examining detailed information on particular proteins. In many analyses the reliability of the characterization of the interactions becomes important and it might be necessary to select sets of PPIs of different confidence levels. To this goal, we generated HIPPIE (Human Integrated Protein-Protein Interaction rEference), a human PPI dataset with a normalized scoring scheme that integrates multiple experimental PPI datasets. HIPPIE's scoring scheme has been optimized by human experts and a computer algorithm to reflect the amount and quality of evidence for a given PPI and we show that these scores correlate to the quality of the experimental characterization. The HIPPIE web tool (available at http://cbdm.mdc-berlin.de/tools/hippie) allows researchers to do network analyses focused on likely true PPI sets by generating subnetworks around proteins of interest at a specified confidence level

    Physiological and Morphological Aspects of Aedes aegypti Developing Larvae: Effects of the Chitin Synthesis Inhibitor Novaluron

    Get PDF
    Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae. aegypti larval development. To our knowledge, this is the first report describing histological alterations produced by a BPU in immature vector mosquitoes

    Synthesis and characterization of Sn‑doped TiO2 flm for antibacterial applications

    Get PDF
    Simple sol–gel method has been exploited to deposit Sn-doped TiO2 thin flms on glass substrates. The resultant coatings were characterized by X-ray difraction (XRD), UV–visible techniques (UV–Vis), Fourier transform infrared spectroscopy (FTIR), and photoluminescence analysis (PL). The XRD pattern reveals an increase in crystallite size of the prepared samples with the increasing doping concentration. A decrease in doping concentrating resulted in the decrease in bandgap values. The diferent chemical bonds on these flms were identifed from their FTIR spectra. The photoluminescence analysis shows an increase in the emission peak intensity with increasing dopant concentration, and this can be attributed to the efect created due to surface states. The prepared samples were tested as antibacterial agent toward both Gram-positive and Gram-negative bacteria like S.aureus (Staphylococcus aureus) and E.coli (Escherichia coli), respectively. The size of the inhibition zones indicates that the sample shows maximum inhibitory property toward E.coli when compared to S.aureus

    Stoichiometry of HLA Class II-Invariant Chain Oligomers

    Get PDF
    BACKGROUND: The HLA gene complex encodes three class II isotypes, DR, DQ, and DP. HLA class II molecules are peptide receptors that present antigens for recognition by T lymphocytes. In antigen presenting cells, the assembly of matched α and β subunits to heterodimers is chaperoned by invariant chain (Ii). Ii forms a homotrimer with three binding sites for class II heterodimers. The current model of class II and Ii structure states that three αβ heterodimers bind to an Ii trimer. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] We have now analyzed the composition and size of the complexes of class II and Ii using epitope tagged class II subunits and density gradient experiments. We show here that class II-Ii oligomers consist of one class II heterodimer associated with one Ii trimer, such that the DR, DQ and DP isotypes are contained within separate complexes with Ii. CONCLUSION/SIGNIFICANCE: We propose a structural model of the class II-Ii oligomer and speculate that the pentameric class II-Ii complex is bent towards the cell membrane, inhibiting the binding of additional class II heterodimers to Ii

    Muscles in “Concert”: Study of Primary Motor Cortex Upper Limb Functional Topography

    Get PDF
    BACKGROUND: Previous studies with Transcranial Magnetic Stimulation (TMS) have focused on the cortical representation of limited group of muscles. No attempts have been carried out so far to get simultaneous recordings from hand, forearm and arm with TMS in order to disentangle a 'functional' map providing information on the rules orchestrating muscle coupling and overlap. The aim of the present study is to disentangle functional associations between 12 upper limb muscles using two measures: cortical overlapping and cortical covariation of each pair of muscles. Interhemispheric differences and the influence of posture were evaluated as well. METHODOLOGY/PRINCIPAL FINDINGS: TMS mapping studies of 12 muscles belonging to hand, forearm and arm were performed. Findings demonstrate significant differences between the 66 pairs of muscles in terms of cortical overlapping: extremely high for hand-forearm muscles and very low for arm vs hand/forearm muscles. When right and left hemispheres were compared, overlapping between all possible pairs of muscles in the left hemisphere (62.5%) was significantly higher than in the right one (53.5% ). The arm/hand posture influenced both measures of cortical association, the effect of Position being significant [p = .021] on overlapping, resulting in 59.5% with prone vs 53.2% with supine hand, but only for pairs of muscles belonging to hand and forearm, while no changes occurred in the overlapping of proximal muscles with those of more distal districts. CONCLUSIONS/SIGNIFICANCE: Larger overlapping in the left hemisphere could be related to its lifetime higher training of all twelve muscles studied with respect to the right hemisphere, resulting in larger intra-cortical connectivity within primary motor cortex. Altogether, findings with prone hand might be ascribed to mechanisms facilitating coupling of muscles for object grasping and lifting -with more proximal involvement for joint stabilization- compared to supine hand facilitating actions like catching. TMS multiple-muscle mapping studies permit a better understanding of motor control and 'plastic' reorganization of motor system

    Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications

    Get PDF
    corecore