12 research outputs found

    Dynamic resource allocation heuristics that manage tradeoff between makespan and robustness

    Get PDF
    Final draft post refereeing.Includes bibliographical references.Heterogeneous parallel and distributed computing systems may operate in an environment where certain system performance features degrade due to unpredictable circumstances. Robustness can be defined as the degree to which a system can function correctly in the presence of parameter values different from those assumed. This work develops a model for quantifying robustness in a dynamic heterogeneous computing environment where task execution time estimates are known to contain errors. This mathematical expression of robustness is then applied to two different problem environments. Several heuristic solutions to both problem variations are presented that utilize this expression of robustness to influence mapping decisions.This research was supported by the DARPA Information Exploitation Office under contract No. NBCHC030137, by the Colorado State University Center for Robustness in Computer Systems (funded by the Colorado Commission on Higher Education Technology Advancement Group through the Colorado Institute of Technology), and by the Colorado State University George T. Abell Endowment

    Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: a review

    No full text
    International audienceGlobal pollution is calling for advanced methods to remove contaminants from water and wastewater, such as TiO2-assisted photocatalysis. The environmental applications of titanium dioxide have started after the initial TiO2 application for water splitting by Fujishima and Honda in 1972. TiO2 is now used for self-cleaning surfaces, air and water purification systems, microbial inactivation and selective organic conversion. The synthesis of titanium dioxide nanomaterials with high photo-catalytic activity is actually a major challenge. Here we review titanium dioxide photocatalysis with focus on mechanims, synthesis, and applications. Synthetic methods include sol-gel, sonochemical, microwave, oxidation, deposition, hydro/sol-vothermal, and biological techniques. Applications comprise the production of energy, petroleum recovery, and the removal of microplastics, pharmaceuticals, metals, dyes, pesticides, and of viruses such as the severe acute respiratory syndrome coronavirus 2

    Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: a review

    No full text
    International audienceGlobal pollution is calling for advanced methods to remove contaminants from water and wastewater, such as TiO2-assisted photocatalysis. The environmental applications of titanium dioxide have started after the initial TiO2 application for water splitting by Fujishima and Honda in 1972. TiO2 is now used for self-cleaning surfaces, air and water purification systems, microbial inactivation and selective organic conversion. The synthesis of titanium dioxide nanomaterials with high photo-catalytic activity is actually a major challenge. Here we review titanium dioxide photocatalysis with focus on mechanims, synthesis, and applications. Synthetic methods include sol-gel, sonochemical, microwave, oxidation, deposition, hydro/sol-vothermal, and biological techniques. Applications comprise the production of energy, petroleum recovery, and the removal of microplastics, pharmaceuticals, metals, dyes, pesticides, and of viruses such as the severe acute respiratory syndrome coronavirus 2

    Biochar as an Eco-Friendly and Economical Adsorbent for the Removal of Colorants (Dyes) from Aqueous Environment: A Review

    No full text
    Dyes (colorants) are used in many industrial applications, and effluents of several industries contain toxic dyes. Dyes exhibit toxicity to humans, aquatic organisms, and the environment. Therefore, dyes containing wastewater must be properly treated before discharging to the surrounding water bodies. Among several water treatment technologies, adsorption is the most preferred technique to sequester dyes from water bodies. Many studies have reported the removal of dyes from wastewater using biochar produced from different biomass, e.g., algae and plant biomass, forest, and domestic residues, animal waste, sewage sludge, etc. The aim of this review is to provide an overview of the application of biochar as an eco-friendly and economical adsorbent to remove toxic colorants (dyes) from the aqueous environment. This review highlights the routes of biochar production, such as hydrothermal carbonization, pyrolysis, and hydrothermal liquefaction. Biochar as an adsorbent possesses numerous advantages, such as being eco-friendly, low-cost, and easy to use; various precursors are available in abundance to be converted into biochar, it also has recyclability potential and higher adsorption capacity than other conventional adsorbents. From the literature review, it is clear that biochar is a vital candidate for removal of dyes from wastewater with adsorption capacity of above 80%

    Dynamic resource management heuristics for minimizing makespan while maintaining an acceptable level of robustness in an uncertain environment

    Get PDF
    Includes bibliographical references (pages 15-18).Heterogeneous parallel and distributed computing systems may operate in an environment where certain system performance features degrade due to unpredictable circumstances. Robustness can be defined as the degree to which a system can function correctly in the presence of parameter values different from those assumed. An important research problem in resource management is how to determine a resource allocation and scheduling of tasks to machines that optimizes a system performance feature while delivering acceptable level of robustness. Makespan (defined as the time required to complete all tasks in a resource allocation) is often the performance parameter that is optimized in such systems. This paper presents a robustness metric for dynamic resource allocations where task execution times are uncertain. The goal of this research is to develop heuristics capable of dynamically mapping tasks to machines such that makespan is minimized and a specified level of robustness is maintained. This research proposes, evaluates, and compares ten different dynamic heuristics for their ability to maintain or maximize the proposed dynamic robustness metric in an uncertain environment. In addition, the makespan results of the proposed heuristics are compared to a lower bound

    Dynamic resource allocation heuristics for maximizing robustness with an overall makespan constraint in an uncertain environment

    Get PDF
    Abstract — Heterogeneous parallel and distributed computing systems may operate in an environment where certain system performance features degrade due to unpredictable circumstances. Robustness can be defined as the degree to which a system can function correctly in the presence of parameter values different from those assumed. This work uses a mathematic expression of robustness for a dynamic environment where task execution time estimates are known to contain errors. Several heuristic solutions to the problem are presented that utilize this expression of robustness to influence mapping decisions. These solutions are then compared to a bound on the highest attainable robustness of the described system. Index Terms — robustness, resource allocation, makespan, dynamic heuristics

    Diversity of Conopeptides and Conoenzymes from the Venom Duct of the Marine Cone Snail Conus bayani as Determined from Transcriptomic and Proteomic Analyses

    No full text
    Marine cone snails are predatory gastropods characterized by a well-developed venom apparatus and highly evolved hunting strategies that utilize toxins to paralyze prey and defend against predators. The venom of each species of cone snail has a large number of pharmacologically active peptides known as conopeptides or conotoxins that are usually unique in each species. Nevertheless, venoms of only very few species have been characterized so far by transcriptomic approaches. In this study, we used transcriptome sequencing technologies and mass spectrometric methods to describe the diversity of venom components expressed by a worm-hunting species, Conus bayani. A total of 82 conotoxin sequences were retrieved from transcriptomic data that contain 54 validated conotoxin sequences clustered into 21 gene superfamilies including divergent gene family, 17 sequences clustered to 6 different conotoxin classes, and 11 conotoxins classified as unassigned gene family. Seven new conotoxin sequences showed unusual cysteine patterns. We were also able to identify 19 peptide sequences using mass spectrometry that completely overlapped with the conotoxin sequences obtained from transcriptome analysis. Importantly, herein we document the presence of 16 proteins that include five post-translational modifying enzymes obtained from transcriptomic data. Our results revealed diverse and novel conopeptides of an unexplored species that could be used extensively in biomedical research due to their therapeutic potentials

    The Environment

    No full text
    Endowment. Needs to be approved for public release; distribution unlimited. Heterogeneous parallel and distributed computing systems may operate in an environment where certain system performance features degrade due to unpredictable circumstances. Robustness can be defined as the degree to which a system can function correctly in the presence of parameter values different from those assumed. An important research problem in resource management is how to determine a resource allocation and scheduling of tasks to machines that optimizes a system performance feature while delivering acceptable level of robustness. Makespan (defined as the time required to complete all tasks in a resource allocation) is often the performance parameter that is optimized in such systems. This paper presents a robustness metric for dynamic resource allocations where task execution times are uncertain. The goal of this research is to develop heuristics capable of dynamically mapping tasks to machines such that makespan is minimized and a specified level of robustness is maintained. This research proposes, evaluates, and compares ten different dynamic heuristics for their ability to maintain or maximize the proposed dynamic robustness metric in an uncertain environment. In addition, th

    Dynamic resource allocation heuristics that manage tradeoff between makespan and robustness

    No full text
    Abstract Heterogeneous parallel and distributed computing systems may operate in an environment where certain system performance features degrade due to unpredictable circumstances. Robustness can be defined as the degree to which a system can function correctly in the presence of parameter values different from those assumed. This work develops a model for quantifying robustness in a dynamic heterogeneous computing environment where task execution time estimates are known to contain errors. This mathematical expression of robustness is then applied to two different problem environments. Several heuristic solutions to both problem variations are presented that utilize this expression of robustness to influence mapping decisions
    corecore