3 research outputs found

    Search of sub-parsec massive binary black holes through line diagnosis II

    Get PDF
    Massive black hole binaries at sub-parsec separations may display in their spectra anomalously small flux ratios between the MgII and CIV broad emission lines, i.e. F_MgII/F_CIV <~ 0.1, due to the erosion of the broad line region around the active, secondary black hole, by the tidal field of the primary. In Paper I by Montuori et al. (2011), we focussed on broad lines emitted by gas bound to the lighter accreting member of a binary when the binary is at the center of a hollow density region (the gap) inside a circum-binary disc. The main aim of this new study is at exploring the potential contribution to the broad line emission by the circum-binary disc and by gaseous streams flowing toward the black hole through the gap. We carry out a post-process analysis of data extracted from a SPH simulation of a circum-binary disc around a black hole binary. Our main result is that the MgII to CIV flux ratio can be reduced to ~ 0.1 within an interval of sub-pc binary separations of the order of a ~ (0.01-0.2)(f_Edd/0.1)^(1/2) pc corresponding to orbital periods of ~ (20-200) (f_Edd/0.1)^(3/4) years for a secondary BH mass in the range M_2 ~ 10^7-10^9 M_sun and a binary mass ratio of 0.3. At even closer separations this ratio returns to increase to values that are indistinguishable from the case of a single AGN (typically F_MgII/F_CIV ~ 0.3-0.4) because of the contribution to the MgII line from gas in the circum-binary disc.Comment: 7 pages, 3 figure, accepted for publication in MNRA

    AK Sco, first detection of a highly disturbed atmosphere in a pre-main sequence close binary

    Get PDF
    AK Sco is a unique source: a ~10 Myrs old pre-main sequence spectroscopic binary composed of two nearly equal F5 stars that at periastron are separated by barely eleven stellar radii so, the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e=0.47) and very strong tides are expected. This makes of AK Sco, the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during pre-main sequence (PMS) evolution. In this letter, the detection of a highly disturbed (sigma ~ 100 km/s) and very dense atmosphere (ne = 1.6e10cm-3) is reported. Significant line broadening blurs any signs of ion belts or bow shocks in the spectrum of the atmospheric plasma. The radiative loses cannot be accounted solely by the dissipation of energy from the tidal wave propagating in the stellar atmosphere; neither by the accreting material. The release of internal energy from the star seems to be the most likely source of the plasma heating. This is the first clear indication of a highly disturbed atmosphere surrounding a pre-main sequence close binary.Comment: 10 pages 2 figures. Astrophysical Journal Letters, accepte
    corecore