13 research outputs found

    Transient erosion in the Valencia Trough turbidite systems, NW Mediterranean Basin

    Get PDF
    Submarine canyons can efficiently drain sediments from continental margins just as river systems do in subaerial catchments. Like in river systems, submarine canyons are often arranged as complex drainage networks that evolve from patterns of erosion and deposition. In the present paper we use a morphometric analysis of submarine canyon-channel long-profiles to study the recent sedimentary history of the Valencia Trough turbidite system (VTTS) in the NW Mediterranean Sea. The VTTS is unique in that it drains sediment from margins with contrasting morphologies through a single "trunk" conduit, the Valencia Channel. The Valencia Channel has been active since the late Miocene, evolving in response to Plio-Quaternary episodes of erosion and deposition. The integrated analysis of long-profiles obtained from high-resolution bathymetric data across the entire turbidite system shows evidence for transient canyon incision in the form of knickpoints and hanging tributaries. Multiple factors appear to have triggered these periods of incision. These include a large debris flow at 11,500 yr BP that disrupted the upper reaches of the VTTS and glacio-eustatic lowstands that forced shifting of sediment input to the VTTS. Based on these inferences, long-term time-averaged incision rates for the Valencia Channel have been estimated. The evidence we present strongly suggests that Foix Canyon has played a key role in the drainage dynamics of the VTTS in the past. This study builds conceptually on a recent modeling study that provides a morphodynamic explanation for the long-term evolution of submarine canyon thalweg profiles. The procedure and results from this work are of potential application to other submarine sediment drainage systems, past and present, including those containing mid-ocean type valleys like the Valencia Channel

    Optimized plankton imaging, clustering and visualization workflows through integrative data management and application of artificial intelligence

    Get PDF
    Phytoplankton is a diverse group of photosynthesizing organisms which account for approximately fifty percent of the primary production on Earth. Increasing our knowledge on phytoplankton dynamics (and plankton in general) is therefore of major importance. In the present research, we aimed to reveal the spatiotemporal dynamics of the phyto- and zooplankton community in the Eastern English Channel, Southern Bight of the North Sea and the Thames estuary. To do so, we organized a JERICO-NEXT Lifewatch cruise in May 2017 on board of the RV Simon Stevin and sampled 44 stations, involving five research institutions from France (CNRS-LOG,), The Netherlands (RWS, NIOZ) and Belgium (UGENT, VLIZ). To quantify the biomass of the phytoplankton community we used a unique combination of three flow cytometers and two Fast Repetition Rate Fluorometerss that were coupled to the underway ferrybox system. These observations were complemented with Water Insight Spectrometer and water profile data (by means of a CTD) and samples for zooplankton, pigment and nutrient analysis. A dedicated data workshop was organized with all partners to conduct a joint analysis on both the biotic and abiotic data. A first exploration of the data, by means of regression-based models and multivariate statistics, suggested that mainly nutrient discharges from the rivers influence the plankton structure. Furthermore, water turbidity is controlling photosynthetic activity and horizontal and vertical variations of photosynthetic properties can be discriminated

    Hyperspectral and multispectral ocean color inversions to detect <i>Phaeocystis globosa</i> blooms in coastal waters

    No full text
    Identification of phytoplankton groups from space is essential to map and monitor algal blooms in coastal waters, but remains a challenge due to the presence of suspended sediments and dissolved organic matter which interfere with phytoplankton signal. On the basis of field measurements of remote sensing reflectance (Rrs(lambda)), bio-optical parameters, and phytoplankton cells enumerations, we assess the feasibility of using multispectral and hyperspectral approaches for detecting spring blooms of Phaeocystis globosa (P. globosa). The two reflectance ratios (Rrs(490)/Rrs(510) and Rrs(442.5)/Rrs(490)), used in the multispectral inversion, suggest that detection of P. globosa blooms are possible from current ocean color sensors. The effects of chlorophyll concentration, colored dissolved organic matter (CDOM), and particulate matter composition on the performance of this multispectral approach are investigated via sensitivity analysis. This analysis indicates that the development of a remote sensing algorithm, based on the values of these two ratios, should include information about CDOM concentration. The hyperspectral inversion is based on the analysis of the second derivative of Rrs(lambda) (d lambda2 Rrs). Two criteria, based on the position of the maxima and minima of dlambda2 Rrs, are established to discriminate the P. globosa blooms from diatoms blooms. We show that the position of these extremes is related to the specific absorption spectrum of P. globosa and is significantly correlated with the relative biomass of P. globosa. This result confirms the advantage of a hyperspectral over multispectral inversion for species identification and enumeration from satellite observations of ocean color

    Amazon river carbon dioxide outgassing fuelled by wetlands

    No full text
    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle(1). A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems(2). It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream(3,4). Three-quarters of the world's flooded land consists of temporary wetlands(5), but the contribution of these productive ecosystems(6) to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems(1,7). Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains(8). Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters
    corecore