5 research outputs found

    New Antibody-Free Mass Spectrometry-Based Quantification Reveals That C9ORF72 Long Protein Isoform Is Reduced in the Frontal Cortex of Hexanucleotide-Repeat Expansion Carriers

    Get PDF
    Frontotemporal dementia (FTD) is a fatal neurodegenerative disease characterized by behavioral and language disorders. The main genetic cause of FTD is an intronic hexanucleotide repeat expansion (G4C2)n in the C9ORF72 gene. A loss of function of the C9ORF72 protein associated with the allele-specific reduction of C9ORF72 expression is postulated to contribute to the disease pathogenesis. To better understand the contribution of the loss of function to the disease mechanism, we need to determine precisely the level of reduction in C9ORF72 long and short isoforms in brain tissue from patients with C9ORF72 mutations. In this study, we developed a sensitive and robust mass spectrometry (MS) method for quantifying C9ORF72 isoform levels in human brain tissue without requiring antibody or affinity reagent. An optimized workflow based on surfactant-aided protein extraction and pellet digestion was established for optimal recovery of the two isoforms in brain samples. Signature peptides, common or specific to the isoforms, were targeted in brain extracts by multiplex MS through the parallel reaction monitoring mode on a Quadrupole–Orbitrap high resolution mass spectrometer. The assay was successfully validated and subsequently applied to frontal cortex brain samples from a cohort of FTD patients with C9ORF72 mutations and neurologically normal controls without mutations. We showed that the C9ORF72 short isoform in the frontal cortices is below detection threshold in all tested individuals and the C9ORF72 long isoform is significantly decreased in C9ORF72 mutation carriers

    Simultaneous quantification of tau and α-synuclein in cerebrospinal fluid by high-resolution mass spectrometry for differentiation of Lewy Body Dementia from Alzheimer's Disease and controls

    No full text
    Tau and alpha-synuclein are central in several neurodegenerative diseases, including Alzheimer Disease (AD), Dementia with Lewy Bodies (DLB) and Parkinson Disease (PD). New analytical methods for precise quantification of cerebrospinal fluid (CSF) levels of both tau and alpha-synuclein are required to differentiate between dementias or monitor therapeutic responses. Notably, levels of total alpha-synuclein reported by ELISA are inconsistent among studies, impacted by antibody specificity or lack of standardization. Here, we report on the development and validation of a sensitive and robust mass spectrometry-based assay for the simultaneous quantification of tau and alpha-synuclein in CSF. The optimized workflow avoided any affinity reagents, and involved the combination of two enzymes, Glu-C and trypsin for optimal sequence coverage of alpha-synuclein acidic C-terminus. Up to 7 alpha-synuclein peptides were quantified, including the C-terminal peptide (132-140), resulting in a sequence coverage of 54% in CSF. The lower limits of quantification (LLOQ) ranged from 0.1 ng mL(-1) to 1 ng mL(-1) depending on the peptide. Regarding CSF tau, 4 peptides common to all isoforms were monitored, and LLOQ ranged from 0.5 ng mL(-1) to 0.75 ng mL(-1). The multiplex method was successfully applied to CSF samples from AD and DLB patients, two clinically overlapping neurodegenerative diseases. CSF alpha-synuclein levels were significantly lower in DLB patients compared to AD and controls. Moreover, tau and alpha-synuclein concentrations showed opposite trends in AD and DLB patients, suggesting the benefit of combining the two biomarkers for differentiation of DLB from AD and controls

    A Parallelization Strategy for the Time Efficient Analysis of Thousands of LC/MS Runs in High-Performance Computing Environment

    No full text
    Combining robust proteomics instrumentation with high-throughput enabling liquid chromatography (LC) systems (e.g., timsTOF Pro and the Evosep One system, respectively) enabled mapping the proteomes of 1000s of samples. Fragpipe is one of the few computational protein identification and quantification frameworks that allows for the time-efficient analysis of such large data sets. However, it requires large amounts of computational power and data storage space that leave even state-of-the-art workstations underpowered when it comes to the analysis of proteomics data sets with 1000s of LC mass spectrometry runs. To address this issue, we developed and optimized a Fragpipe-based analysis strategy for a high-performance computing environment and analyzed 3348 plasma samples (6.4 TB) that were longitudinally collected from hospitalized COVID-19 patients under the auspice of the Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study. Our parallelization strategy reduced the total runtime by ∼90% from 116 (theoretical) days to just 9 days in the high-performance computing environment. All code is open-source and can be deployed in any Simple Linux Utility for Resource Management (SLURM) high-performance computing environment, enabling the analysis of large-scale high-throughput proteomics studies

    On-a-chip tryptic digestion of transthyretin:A step toward an integrated microfluidic system for the follow-up of familial transthyretin amyloidosis

    No full text
    International audienceA microfluidic microreactor for trypsin mediated transthyretin (TTR) digestion has been developed as a step towards the elaboration of a fully integrated microdevice for the detection of a rare and disabling disease, the familial transthyretin amyloidosis (ATTR) which is related to specific TTR mutations. Therefore, an enzymatic microreactor coupled to an analytical step able to monitor the mutation of TTR on specific peptide fragments would allow an accurate monitoring of the treatment efficiency of ATTR. In this study, two types of immobilized trypsin microreactors have been investigated: a new miniaturized, microfluidic fluidized bed packed with trypsin functionalized magnetic particles (MPs), and a thiol-ene (TE) monolithbased chip. Their performances were first demonstrated with N-benzoyl-DL-arginine-4-nitroanilide hydrochloride BApNA, a low molecular weight substrate. High reaction yields (75.2%) have been reached within 0.6 min for the TE-based trypsin microreactor, while a lower yield (12.4%) was obtained for the micro-fluidized bed within a similar residence time. Transposition of the optimized conditions, developed with BApNA, to TTR digestion in the TE-based trypsin microreactor was successfully performed. We demonstrated that the TE-chip can achieve an efficient and reproducible digestion of TTR. This has been assessed by MS detection. In addition, TTR hydrolysis led to the production of a fragment of interest allowing the therapeutic follow-up of more than twenty possible ATTR mutations. High sequence coverage (90%), similar to those obtained with free trypsin, was achieved in a short time (2.4 min). Repeated experiments showed good reproducibility (RSD = 6.8%). These promising results open up the route for an innovative treatment follow-up dedicated to ATTR
    corecore