1,399 research outputs found
Mechanical characterization of Iroko wood using small specimens
Despite their favorable physical and mechanical properties for structural use, tropical woods, such as Iroko (Milicia excelsa), present knowledge gaps to be filled mainly about their mechanical characterization, which currently limit their use or result in under- or overdimensioned structural elements. Visual classification, one of the most used methods for characterizing wood, is inaccurate in the case of Iroko due to the wide variety of geographical locations in which this species can be found. In addition, mechanical characterization using test pieces with structural dimensions leads to high and impractical costs. In this context, this study aims to verify the mechanical properties of Iroko (imported from the Republic of the Congo) from small size specimens, a process that is currently standardized only for softwoods, and to verify the correlation of different properties through bending properties and ultrasound tests. Prior to the bending tests, the speed of propagation of ultrasonic waves was measured using the direct method. The results obtained show a good correlation between density and bending properties and the velocity of propagation of ultrasonic waves
Expressão da progranulina durante os primeiros estágios de desenvolvimento hepático em ratos Fischer 344
Transplants are the only effective therapy for the treatment of advanced liver diseases such as cirrhosis. Given the limited number of organ donors, regenerative medicine has sought for sources of cells and tissues for replacement therapy. Embryonic stem cells are a promising source of material for transplantation because of their exclusive property of being expanded indefinitely in culture, thus, they are a source of replacement tissue. Moreover, they are capable of differentiating into practically all cell types, and may be utilized in replacement therapy in various diseases. The liver bud has bipotent stem cells that have not yet differentiated into hepatocytes or biliary duct cells; however, they have great potential of proliferation and differentiation. Thus, the challenge is to identify methods that promote their differentiation in specific and functional strains. This study aimed to evaluate the role of the progranulin growth factor PGRN during the liver development of rats F344, since this growth factor could be utilized in protocols of differentiation of stem cells of the liver bud in functional hepatocytes. The results showed that PGRN is present during different periods of hepatogenesis in F344 rats, and that this growth factor should be involved in the process of differentiation of hepatoblasts into hepatocytes after activation by HNF4α , however, PGRN seems not to exert a cellular proliferation function during the hepatogenesis. Thus, PGRN can be used in future protocols of liver cell differentiation directed toward cellular therapy in Regenerative Medicine.Os transplantes são a única terapia eficaz para o tratamento de doenças hepáticas avançadas, como a cirrose. Dado o número limitado de doadores de órgãos, a medicina regenerativa tem procurado fontes de células para a terapia de substituição. As células embrionárias são uma fonte promissora de material para o transplante devido à sua propriedade exclusiva de ser expandida indefinidamente em cultura, assim, elas são uma fonte de tecido de substituição. Além disso, são capazes de se diferenciar em praticamente todos os tipos celulares, e podem ser utilizadas na terapia de substituição em várias doenças. O broto hepático tem células-tronco (CT) bipotenciais que ainda não se diferenciam em hepatócitos ou células do ducto biliar, contudo, elas têm um grande potencial de proliferação e de diferenciação. Desse modo, o desafio é identificar métodos que promovam sua diferenciação em linhagens específicas e funcionais. Este estudo teve como objetivo avaliar o papel do fator de crescimento progranulina (PGRN) durante o desenvolvimento hepático em ratos F344, uma vez que a PGRN poderia ser utilizada em protocolos de diferenciação de CT do broto hepático em hepatócitos funcionais. Os resultados mostraram que PGRN está presente durante diferentes períodos da hepatogênese em ratos F344, e que a mesma deve estar envolvida no processo de diferenciação de hepatoblastos em hepatócitos após ativação por HNF4α, no entanto, a PGRN parece não desempenhar uma função de proliferação celular durante a hepatogênese. Assim, a PGRN pode ser usada em futuros protocolos de diferenciação de células hepáticas voltadas para a terapia celular na medicina regenerativa
Turbulence Hierarchy in a Random Fibre Laser
Turbulence is a challenging feature common to a wide range of complex
phenomena. Random fibre lasers are a special class of lasers in which the
feedback arises from multiple scattering in a one-dimensional disordered
cavity-less medium. Here, we report on statistical signatures of turbulence in
the distribution of intensity fluctuations in a continuous-wave-pumped
erbium-based random fibre laser, with random Bragg grating scatterers. The
distribution of intensity fluctuations in an extensive data set exhibits three
qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture
of two distributions with exponentially decaying tails near the threshold, and
a mixture of distributions with stretched-exponential tails above threshold.
All distributions are well described by a hierarchical stochastic model that
incorporates Kolmogorov's theory of turbulence, which includes energy cascade
and the intermittence phenomenon. Our findings have implications for explaining
the remarkably challenging turbulent behaviour in photonics, using a random
fibre laser as the experimental platform.Comment: 9 pages, 5 figure
Integrative multi-kinase approach for the identification of potent antiplasmodial hits
Malaria is a tropical infectious disease that affects over 219 million people worldwide. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new antimalarial drugs is a global health priority. Multi-target drug discovery is a promising and innovative strategy for drug discovery and it is currently regarded as one of the best strategies to face drug resistance. Aiming to identify new multi-target antimalarial drug candidates, we developed an integrative computational approach to select multi-kinase inhibitors for Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4) and protein kinase 6 (PK6). For this purpose, we developed and validated shape-based and machine learning models to prioritize compounds for experimental evaluation. Then, we applied the best models for virtual screening of a large commercial database of drug-like molecules. Ten computational hits were experimentally evaluated against asexual blood stages of both sensitive and multi-drug resistant P. falciparum strains. Among them, LabMol-171, LabMol-172, and LabMol-181 showed potent antiplasmodial activity at nanomolar concentrations (EC50 15 folds. In addition, LabMol-171 and LabMol-181 showed good in vitro inhibition of P. berghei ookinete formation and therefore represent promising transmission-blocking scaffolds. Finally, docking studies with protein kinases CDPK1, CDPK4, and PK6 showed structural insights for further hit-to-lead optimization studies.7CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP405996/2016-0; 400760/2014-2Sem informação2018/05926-2; 2017/02353-9; 2012/16525-2; 2017/18611-7; 2018/07007-4; 2013/13119-6; 2018/24878-9; 2015/20774-
Coronary computed tomography angiography compared with single photon emission computed tomography myocardial perfusion imaging as a guide to optimal medical therapy in patients presenting with stable angina: The RESCUE trial
Background The RESCUE (Randomized Evaluation of Patients with Stable Angina Comparing Utilization of Noninvasive Examinations) trial was a randomized, controlled, multicenter, comparative efficacy outcomes trial designed to assess whether initial testing with coronary computed tomographic angiography (CCTA) is noninferior to single photon emission computed tomography (SPECT) myocardial perfusion imaging in directing patients with stable angina to optimal medical therapy alone or optimal medical therapy with revascularization. Methods and Results The end point was first major adverse cardiovascular event (MACE) (cardiac death or myocardial infarction), or revascularization. Noninferiority margin for CCTA was set a priori as a hazard ratio (HR) of 1.3 (95% CI=0, 1.605). One thousand fifty participants from 44 sites were randomized to CCTA (n=518) or SPECT (n=532). Mean follow-up time was 16.2 (SD 7.9) months. There were no cardiac-related deaths. In patients with a negative CCTA there was 1 acute myocardial infarction; in patients with a negative SPECT examination there were 2 acute myocardial infarctions; and for positive CCTA and SPECT, 1 acute myocardial infarction each. Participants in the CCTA arm had a similar rate of MACE or revascularization compared with those in the SPECT myocardial perfusion imaging arm, (HR, 1.03; 95% CI=0.61-1.75)
Complete mitochondrial genomes of the freshwater mussels Amblema plicata (Say, 1817), Pleurobema oviforme (Conrad, 1834), and Popenaias popeii (Lea, 1857) (Bivalvia: Unionidae: Ambleminae)
Freshwater mussels are a critically imperiled group of mollusks that play key ecological roles and provide important services to humans. The Ambleminae is the only subfamily of these mussels, endemic to North America. Complete mitogenomes have only been sequenced for two of five tribes of the subfamily. Pleurobema oviforme, Amblema plicata, and Popenaias popeii each belong to tribes Pleurobemini, Amblemini, and Popenaidini, respectively, and have not had published mitogenomes. Thus, this study aims to present the complete mitogenomes for these species, to provide a phylogeny of the Ambleminae and confirm the gene arrangements with representation from each of its tribes. The newly sequenced mitogenomes range from 15,852 to 15,993 nucleotides, are composed of 13 PCGs, 22 tRNAs, and two rRNAs and all share the same (UF1) gene order.This work was supported by Portuguese Foundation for Science and
Technology (FCT) [grant number ConBioMics/BI-Lic/2019-037 (JTT), grant
number SFRH/BD/137935/2018 (AGS)]; COMPETE 2020, Portugal 2020
and the European Union through the ERDF, and by Portuguese
Foundation for Science and Technology (FCT) through national funds
[UID/Multi/04423/2019] under project ConBiomics: the missing approach
for the Conservation of Bivalves Project, and [project number NORTE-01-
0145-FEDER-030286]. Fieldwork in Texas was funded by the U.S. Fish and Wildlife Service, and Texas Parks and Wildlife Department (TPWD) as a Joint Traditional Section 6 Project 407348.info:eu-repo/semantics/publishedVersio
Mesozoic mitogenome rearrangements and freshwater mussel (Bivalvia: Unionoidea) macroevolution
© 2019, The Author(s), under exclusive licence to The Genetics Society. Using a new fossil-calibrated mitogenome-based approach, we identified macroevolutionary shifts in mitochondrial gene order among the freshwater mussels (Unionoidea). We show that the early Mesozoic divergence of the two Unionoidea clades, Margaritiferidae and Unionidae, was accompanied by a synchronous split in the gene arrangement in the female mitogenome (i.e., gene orders MF1 and UF1). Our results suggest that this macroevolutionary jump was completed within a relatively short time interval (95% HPD 201–226 Ma) that coincided with the Triassic–Jurassic mass extinction. Both gene orders have persisted within these clades for ~200 Ma. The monophyly of the so-called “problematic” Gonideinae taxa was supported by all the inferred phylogenies in this study using, for the first time, the M- and F-type mitogenomes either singly or combined. Within Gonideinae, two additional splits in the gene order (UF1 to UF2, UF2 to UF3) occurred in the Mesozoic and have persisted for ~150 and ~100 Ma, respectively. Finally, the mitogenomic results suggest ancient connections between freshwater basins of East Asia and Europe near the Cretaceous–Paleogene boundary, probably via a continuous paleo-river system or along the Tethys coastal line, which are well supported by at least three independent but almost synchronous divergence events
Expansion and systematics redefinition of the most threatened freshwater mussel family, the Margaritiferidae.
Two Unionida (freshwater mussel) families are present in the Northern Hemisphere; the Margaritiferidae, representing the most threatened of unionid families, and the Unionidae, which include several genera of unresolved taxonomic placement. The recent reassignment of the poorly studied Lamprotula rochechouartii from the Unionidae to the Margaritiferidae motivated a new search for other potential species of margaritiferids from members of Gibbosula and Lamprotula. Based on molecular and morphological analyses conducted on newly collected specimens from Vietnam, we here assign Gibbosula crassa to the Margaritiferidae. Additionally, we reanalyzed all diagnostic characteristics of the Margaritiferidae and examined museum specimens of Lamprotula and Gibbosula. As a result, two additional species are also moved to the Margaritiferidae, i.e. Gibbosula confragosa and Gibbosula polysticta. We performed a robust five marker phylogeny with all available margaritiferid species and discuss the taxonomy within the family. The present phylogeny reveals the division of Margaritiferidae into four ancient clades with distinct morphological, biogeographical and ecological characteristics that justify the division of the Margaritiferidae into two subfamilies (Gibbosulinae and Margaritiferinae) and four genera (Gibbosula, Cumberlandia, Margaritifera, and Pseudunio). The systematics of the Margaritiferidae family is re-defined as well as their distribution, potential origin and main biogeographic patterns
The male and female complete mitochondrial genomes of the threatened freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) (Bivalvia: Margaritiferidae)
The complete mitogenomes of one (M-)ale (North America), one Hermaphroditic (Europe), and two (F-)emale (North America and Europe) individuals of the freshwater pearl mussel Margaritifera margaritifera were sequenced. The M-type and F-type (Female and Hermaphroditic) mitogenomes have 17,421 and 16,122 nucleotides, respectively. All with the same content: 13 protein-coding genes, 22 transfer RNA, two ribosomal RNA genes, and one sex-related ORF. The M-type is highly divergent (37.6% uncorrected p-distance) from the F-type mitogenomes. North American and European F-type mitogenomes exhibit low genetic divergence (68 nt substitutions), and the Female and Hermaphroditic European mitogenomes are almost identical, and matching sex-related ORFs.This work was supported by Portuguese Foundation for Science and Technology (FCT) [grant number SFRH/BD/115728/2016 (MLL), grant number SFRH/BD/137935/2018 (AGS)]; Russian Foundation for Basic Research [grant number 18-34-20033 (IVV)]; Dawson Fellowship at St. Catharine's College, Cambridge (DCA); Life Margal Ulla [number LIFE09 NAT/ES/000514 (RA and PO)]; COMPETE 2020, Portugal 2020 and the European Union through the ERDF, and by Portuguese Foundation for Science and Technology (FCT) through national funds [UID/Multi/04423/2019] under project ConBiomics: the missing approach for the Conservation of freshwater Bivalves Project, and [project number NORTE-01-0145-FEDER-030286]; Federal Agency for Scientific Organizations under Grants [grant number 0409-2015-0143 (INB and IVV)
- …