19,877 research outputs found

    Are Transition Economy Workers Underpaid?

    Get PDF
    We examine the extent to which workers in transition and developed market economies are able to obtain wages that fully reflect their skills and labor force characteristics. We find that workers in two transition economies, the Czech Republic and Poland, are able to better attain the maximum wage available than are workers in a sample of developed market economies. This greater wage-setting efficiency in the transition economies appears to be more the result of social and demographic characteristics of the labor force than of the mechanisms for setting wages or of labor market policies.labor markets, wage inefficiency, job search, stochastic frontier, economic transition

    On the existence of self-similar spherically symmetric wave maps coupled to gravity

    Get PDF
    We present a detailed analytical study of spherically symmetric self-similar solutions in the SU(2) sigma model coupled to gravity. Using a shooting argument we prove that there is a countable family of solutions which are analytic inside the past self-similarity horizon. In addition, we show that for sufficiently small values of the coupling constant these solutions possess a regular future self-similarity horizon and thus are examples of naked singularities. One of the solutions constructed here has been recently found as the critical solution at the threshold of black hole formation.Comment: 15 pages, LaTe

    Enhanced emission and light control with tapered plasmonic nanoantennas

    Full text link
    We introduce a design of Yagi-Uda plasmonic nanoantennas for enhancing the antenna gain and achieving control over the angular emission of light. We demonstrate that tapering of antenna elements allows to decrease spacing between the antenna elements tenfold also enhancing its emission directivity. We find the optimal tapering angle that provides the maximum directivity enhancement and the minimum end-fire beamwidth

    A complete record from colonization to extinction reveals density dependence and the importance of winter conditions for a population of the silvery blue, Glaucopsyche lygdamus.

    Get PDF
    Butterflies in the family Lycaenidac are often the focus of conservation efforts. However, our understanding of lycaenid population dynamics has been limited to relatively few examples of long-term monitoring data that have been reported. Here, factors associated with population regulation are investigated using a complete record of a single population of the silvery blue, Glaucopsyche lygdamus Doubleday (Lepidoptera: Lycaenidae). Adults of G. lygdamus were first observed in an annual grassland near Davis, California, in 1982 and were last seen in 2003. Relationships between inter-annual variation in abundance and climatic variables were examined, accounting for density dependent effects. Significant effects of both negative density dependence and climatic variation were detected, particularly precipitation and temperature during winter months. Variation in precipitation, the strongest predictor of abundance, was associated directly and positively with butterfly abundance in the same year. Winter temperatures had a negative effect in the same year, but had a lagged, positive effect on abundance in the subsequent year. Mechanistic hypotheses are posed that include climatic effects mediated through both larval and adult plant resources

    A sensitivity analysis of the prediction of the nitrogen fertilizer requirement of cauliflower crops using the HRI WELL_N computer model

    Get PDF
    HRI WELL_N is an easy to use computer model, which has been used by farmers and growers since 1994 to predict crop nitrogen (N) requirements for a wide range of agricultural and horticultural crops. A sensitivity analysis was carried out to investigate the model predictions of the N fertilizer requirement of cauliflower crops, and, at that rate, the yield achieved, yield response to the fertilizer applied, N uptake, NO3-N leaching below 30 and 90 cm and mineral N at harvest. The sensitivity to four input factors – soil mineral N before planting, mineralization rate of soil organic matter, expected yield and duration of growth – was assessed. Values of these were chosen to cover ranges between 40% and 160% of values typical for field crops of cauliflowers grown in East Anglia. The assessments were made for three soils – sand, sandy loam and silt – and three rainfall scenarios – an average year and years with 144% or 56% of average rainfall during the growing season. The sensitivity of each output variable to each of the input factors (and interactions between them) was assessed using a unique ‘sequential' analysis of variance approach developed as part of this research project. The most significant factors affecting N fertilizer requirement across all soil types/rainfall amounts were soil mineral N before planting and expected yield. N requirement increased with increasing yield expectation, and decreased with increasing amounts of soil mineral N before planting. The responses to soil mineral N were much greater when higher yields were expected. Retention of N in the rooting zone was predicted to be poor on light soils in the wettest conditions suggesting that to maximize N use, plants needed to grow rapidly and have reasonable yield potential. Assessment of the potential impacts of errors in the values of the input factors indicated that poor estimation of, in particular, yield expectation and soil mineral N before planting could lead to either yield loss or an increased level of potentially leachable soil mineral N at harvest. The research demonstrates the benefits of using computer simulation models to quantify the main factors for which information is needed in order to provide robust N fertilizer recommendations

    Market response to external events and interventions in spherical minority games

    Full text link
    We solve the dynamics of large spherical Minority Games (MG) in the presence of non-negligible time dependent external contributions to the overall market bid. The latter represent the actions of market regulators, or other major natural or political events that impact on the market. In contrast to non-spherical MGs, the spherical formulation allows one to derive closed dynamical order parameter equations in explicit form and work out the market's response to such events fully analytically. We focus on a comparison between the response to stationary versus oscillating market interventions, and reveal profound and partially unexpected differences in terms of transition lines and the volatility.Comment: 14 pages LaTeX, 5 (composite) postscript figures, submitted to Journal of Physics

    Theory of agent-based market models with controlled levels of greed and anxiety

    Full text link
    We use generating functional analysis to study minority-game type market models with generalized strategy valuation updates that control the psychology of agents' actions. The agents' choice between trend following and contrarian trading, and their vigor in each, depends on the overall state of the market. Even in `fake history' models, the theory now involves an effective overall bid process (coupled to the effective agent process) which can exhibit profound remanence effects and new phase transitions. For some models the bid process can be solved directly, others require Maxwell-construction type approximations.Comment: 30 pages, 10 figure

    Design and characterization of optical-THz phase-matched traveling-wave photomixers

    Get PDF
    Design and characterization of optical-THz phase-matched traveling-wave photomixers for difference-frequency generation of THz waves are presented. A de-biased coplanar stripline fabricated on low-temperature-grown GaAs is illuminated by two non-collinear laser beams which generate moving interference fringes that are accompanied by THz waves. By tuning the offset angle between the two laser beams, the velocity of the interference fringe can be matched to the phase velocity of the THz wave in the coplanar stripline. The generated THz waves are radiated into free space by the antenna at the termination of the stripline. Enhancement of the output power was clearly observed when the phase-matching condition was satisfied. The output power spectrum has a 3-dB bandwidth of 2 THz and rolls off as ~9 dB/Oct which is determined by the frequency dependent attenuation in the stripline, while the bandwidth of conventional photomixer design has the limitation by the RC time constant due to the electrode capacitance. The device can handle the laser power of over 380 mW, which is 5 times higher than the maximum power handring capability of conventional small area devices. The results show that the traveling-wave photomixers have the potential to surpass small area designs, especially at higher frequencies over I THz, owing to their great thermal dissipation capability and capacitance-free wide bandwidth

    Traveling-Wave Photomixers Based On Noncollinear Optical/Terahertz Phase-Matching

    Get PDF
    Traveling-wave THz photomixers based on angle-tuned optical/THz phase-matching are experimentally demonstrated. A dc-biased coplanar stripline terminated by a planar antenna is fabricated on low-temperature-grown GaAs. A distributed area between the striplines is illuminated by two noncollinear laser beams which generate interference fringes accompanied by THz waves. The velocity of the optical fringe is matched to the THz-wave velocity in the stripline by tuning the incident angle of the laser beams. The device can handle the laser power over 300 mW and provides the THz output of ~0.1 µW with the 3-dB bandwidth of 2 THz. The experimental results show that traveling-wave photomixers have the potential to surpass conventional small area designs
    corecore