127 research outputs found

    Shape Memory Hydrogels Based on Noncovalent Interactions

    Get PDF
    Shape memory polymers (SMPs) are polymeric materials that are capable of fixing temporary shape and recovering the permanent shape in response to external stimuli. In particular, supramolecular interactions and dynamic covalent bond have recently been introduced as temporary switches to construct supramolecular shape memory hydrogels (SSMHs), arising as promising materials since they can exhibit excellent cycled shape memory behavior at room temperature. On the other hand, hydrogels, conventionally, are flexible but sometimes extremely soft, and they can be easily damaged under external force, which could limit their long-time application. Therefore, self-healing hydrogels that can be rapidly auto-repaired when the damage occurs have been recently developed to solve this problem. These materials present more than one triggering stimulus that can be used to induce the shape memory and self-healing effect. These driven forces can be originated from hydrogen bonds, hydrophobic interactions, and reversible covalent bonds, among others. Beyond all these, hybrid organic-inorganic interactions represent an interesting possibility due to their versatility and favorable properties that allow the fabrication of multiresponsive hydrogels. In this chapter, shape memory hydrogels based on noncovalent interactions are described

    Optimal pole number and winding designs for low speed-high torque synchronous reluctance machines

    Get PDF
    This paper studies the feasibility of using synchronous reluctance machines (SynRM) for low speed–high torque applications. The challenge lies in obtaining low torque ripple values, high power factor, and, especially, high torque density values, comparable to those of permanent magnet synchronous machines (PMSMs), but without resorting to use permanent magnets. A design and calculation procedure based on multistatic finite element analysis is developed and experimentally validated via a 200 Nm, 160 rpm prototype SynRM. After that, machine designs with different rotor pole and stator slot number combinations are studied, together with different winding types: integral-slot distributed-windings (ISDW), fractional-slot distributed-windings (FSDW) and fractional-slot concentrated-windings (FSCW). Some design criteria for low-speed SynRM are drawn from the results of the study. Finally, a performance comparison between a PMSM and a SynRM is performed for the same application and the conclusions of the study are summarized

    Multilingual Autoregressive Entity Linking

    Get PDF
    We present mGENRE, a sequence-to- sequence system for the Multilingual Entity Linking (MEL) problem—the task of resolving language-specific mentions to a multilingual Knowledge Base (KB). For a mention in a given language, mGENRE predicts the name of the target entity left-to-right, token-by-token in an autoregressive fashion. The autoregressive formulation allows us to effectively cross-encode mention string and entity names to capture more interactions than the standard dot product between mention and entity vectors. It also enables fast search within a large KB even for mentions that do not appear in mention tables and with no need for large-scale vector indices. While prior MEL works use a single representation for each entity, we match against entity names of as many languages as possible, which allows exploiting language connections between source input and target name. Moreover, in a zero-shot setting on languages with no training data at all, mGENRE treats the target language as a latent variable that is marginalized at prediction time. This leads to over 50% improvements in average accuracy. We show the efficacy of our approach through extensive evaluation including experiments on three popular MEL benchmarks where we establish new state-of-the-art results. Source code available at https://github.com/facebookresearch/GENRE

    Node mapping criterion for highly saturated interior PMSMs using magnetic reluctance network

    Get PDF
    Interior Permanent Magnet Synchronous Machine (IPMSM) are high torque density machines that usually work under heavy load conditions, becoming magnetically saturated. To obtain properly their performance, this paper presents a node mapping criterion that ensure accurate results when calculating the performance of a highly saturated IPMSM via a novel magnetic reluctance network approach. For this purpose, a Magnetic Circuit Model (MCM) with variable discretization levels for the different geometrical domains is developed. The proposed MCM caters to V-shaped IPMSMs with variable magnet depth and angle between magnets. Its structure allows static and dynamic time stepping simulations to be performed by taking into account complex phenomena such as magnetic saturation, cross-coupling saturation effect and stator slotting effect. The results of the proposed model are compared to those obtained by Finite Element Method (FEM) for a number of IPMSMs obtaining excellent results. Finally, its accuracy is validated comparing the calculated performance with experimental results on a real prototype

    Tetra­kis(μ2-ferrocene­carboxyl­ato-κ2 O:O′)bis­[(methanol-κO)copper(II)] methanol disolvate

    Get PDF
    The complex mol­ecule of the title compound, [Cu2Fe4(C5H5)4(C6H4O2)4(CH3OH)2]·2CH3OH, lies about an inversion centre and contains two centrosymetrically related CuII atoms bridged by four O:O′-bidentante ferrocene­carboxyl­ate anions, leading to a dimeric tetra­bridged unit with a paddle-wheel geometry. The CuII atom has a distorted square-pyramidal coordination environment with four O atoms from four ferrocene­carboxyl­ate ligands in basal positions and an O atom from a methanol mol­ecule in an apical position. One of the two crystallographically independent ferrocenyl groups has a staggered conformation, while the other is eclipsed. The mol­ecules are connected into a chain along the b axis by O—H⋯O hydrogen bonds involving coordinated and uncoordinated methanol mol­ecules and the O atom from a ferrocene­carboxyl­ate unit

    Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation

    Get PDF
    Gentle Remediation Options (GROs), such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, are cost-effective and environmentally-friendly solutions for soils simultaneously polluted with organic and inorganic compounds. This study assessed the individual and combined effectiveness of GROs in recovering the health of a soil artificially polluted with hexavalent chromium [Cr(VI)] and lindane. A greenhouse experiment was performed using organically-amended vs. non-amended mixed polluted soils. All soils received the following treatments: (i) no treatment; (ii) bioaugmentation with an actinobacteria consortium; (iii) vermiremediation with Eisenia fetida; (iv) phytoremediation with Brassica napus; (v) bioaugmentation + vermiremediation; (vi) bioaugmentation + phytoremediation; and (vii) bioaugmentation + vermiremediation + phytoremediation. Soil health recovery was determined based on Cr(VI) and lindane concentrations, microbial properties and toxicity bioassays with plants and worms. Cr(VI) pollution caused high toxicity, but some GROs were able to partly recover soil health: (i) the organic amendment decreased Cr(VI) concentrations, alleviating toxicity; (ii) the actinobacteria consortium was effective at removing both Cr(VI) and lindane; (iii) B. napus and E. fetida had a positive effect on the removal of pollutants and improved microbial properties. The combination of the organic amendment, B. napus, E. fetida and the actinobacteria consortium was the most effective strategy.Fil: Lacalle, Rafael G.. Universidad del País Vasco; EspañaFil: Aparicio, Juan Daniel. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Artetxe, Unai. Universidad del País Vasco; EspañaFil: Urionabarrenetxea, Erik. Universidad del País Vasco; EspañaFil: Polti, Marta Alejandra. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Soto, Manuel. Universidad del País Vasco; EspañaFil: Garbisu, Carlos. Centro de Investigación. Neiker - Tecnalia; EspañaFil: Becerril, José M.. Universidad del País Vasco; Españ
    corecore