207 research outputs found

    Explicit Evidence Systems with Common Knowledge

    Full text link
    Justification logics are epistemic logics that explicitly include justifications for the agents' knowledge. We develop a multi-agent justification logic with evidence terms for individual agents as well as for common knowledge. We define a Kripke-style semantics that is similar to Fitting's semantics for the Logic of Proofs LP. We show the soundness, completeness, and finite model property of our multi-agent justification logic with respect to this Kripke-style semantics. We demonstrate that our logic is a conservative extension of Yavorskaya's minimal bimodal explicit evidence logic, which is a two-agent version of LP. We discuss the relationship of our logic to the multi-agent modal logic S4 with common knowledge. Finally, we give a brief analysis of the coordinated attack problem in the newly developed language of our logic

    Observation of microbial carbonate build-ups growing at methane seeps near the upper boundary of the gas-hydrate stability zone in the Black Sea

    Get PDF
    Extensive dredge sampling carried out in May-June 2004 in the deeper part of the Dnepr paleo-delta area (NW Black Sea) yielded for the first time chimney-shaped carbonate microbial build-ups, which occur at methane seeps close to upper boundary of the gas-hydrate stability zone (~ 700 m). Carbonate samples taken with a benthic trawl represent fragments of the uppermost, middle and lowest parts of the build-up; they are similar morphologically to those found previously at the shallower and deeper methane seeps in the Black Sea. At the same time, the perforated, plate-like carbonates in the lowest parts of the build-up provide first indications that gas channels are formed during the earliest growth phase of these microbial structures. Stable carbon isotope analyses of the carbonates from the uppermost fragments gave the 5I3C values ranging from -33.7 to -36.6 %o, while the 813C values of the lowest fragments are significantly lighter, varying between -42.0 and -44.6 %o. Oxygen isotopic values also show differences between the samples from the uppermost part of the build-ups, which are composed of a mixture of aragonite and Mg-calcite (5180 = 0.7 to 0.94 %o), and the only Mg-calcite cemented thin slabs of lowest carbonates (5180 = 1.35 to 1.57 96o). The isotope data for carbon and oxygen suggests that carbonates formed as a result of anaerobic microbiological oxi­dation of methane supplied as a shallower-sourced fluid component from below. The difference in 513C and 5I80 values found in the upper and lowest parts of the build-ups may indicate that more carbon derived from seawater and less hydrate water are involved to the chimney formation during its growth, but this may be also a record of the long-term changes in the near-bottom environments related to evolution of salinity, temperature and anoxic conditions in the Black Sea

    Microbial carbonate build-ups at methane seeps near the upper boundary of the gas-hydrate stability zone in the Black Sea: results of EU project CRIMEA

    Get PDF
    Extensive dredging carried out in May-June 2004 in the deeper parts of the Dnepr paleo-delta area (NW Black Sea) yielded for the first time chimney-shaped carbonate microbial build-ups, which occur at methane seeps close to upper boundary of the gas-hydrate stability zone (~ 700 m). Carbonate samples taken with a benthic trawl represent fragments of the uppermost, middle and lowest parts of the build-up, which are similar to those found previously at the shallower and deeper methane seeps in the Black Sea. At the same time, the holed, plate-like carbonates in the lowest parts of the build-up provide first indications that gas channels are formed during the earliest growth phase of these microbial structures. Stable carbon isotope analyses of the carbonates from the uppermost fragments gave the d13C values ranging from -33.7 to -36.6 pro mil, while the d13C values of the lowermost fragments are significantly lighter, varying between -42.0 and -44.6 pro mil. Both these types of carbonates indicate that a major portion of the carbonate carbon originates from bacterial oxidation of the seeping methane. Oxygen isotopic values also show differences between the more irregular and porous samples from the uppermost part of the build-up, which are composed of a mixture of aragonite and Mg-calcite (d18O = 0.7 to 0.94 pro mil, and the only Mg-calcite cemented thin slabs of lowermost carbonates (d18O = 1.35 to 1.57 pro mil. The difference in d13C/d18O ratio found in the upper and lower parts of the build-up may reflect the changing of the water temperature and salinity during the chimney growth

    Asymptotic normalization coefficients (nuclear vertex constants) for p+7Be→8Bp+^7Be\to ^8B and the direct 7Be(p,γ)8B^7Be(p,\gamma)^8B astrophysical S-factors at solar energies

    Full text link
    A new analysis of the precise experimental astrophysical S-factors for the direct capture 7Be(p,γ)^7Be(p,\gamma) 8B^8B reaction [A.J.Junghans et al.Phys.Rev. C 68 (2003) 065803 and L.T. Baby et al. Phys.Rev. C 67 (2003) 065805] is carried out based on the modified two - body potential approach in which the direct astrophysical S-factor, S17(E) {\rm S_{17}(E)}, is expressed in terms of the asymptotic normalization constants for p+7Be→8Bp+^7Be\to ^8B and two additional conditions are involved to verify the peripheral character of the reaction under consideration. The Woods-Saxon potential form is used for the bound (p+7Bep+^7Be)- state wave function and for the p7Bep^7Be- scattering wave function. New estimates are obtained for the ^{\glqq}indirectly measured\grqq values of the asymptotic normalization constants (the nuclear vertex constants) for the p+7Be→8Bp+^7Be\to ^8B and S17(E)S_{17}(E) at E≤\le 115 keV, including EE=0. These values of S17(E)S_{17}(E) and asymptotic normalization constants have been used for getting information about the ^{\glqq}indirectly measured\grqq values of the ss wave average scattering length and the pp wave effective range parameters for p7Bep^7Be- scattering.Comment: 27 pages, 6 figure

    Applicability of layered sine-Gordon models to layered superconductors: II. The case of magnetic coupling

    Full text link
    In this paper, we propose a quantum field theoretical renormalization group approach to the vortex dynamics of magnetically coupled layered superconductors, to supplement our earlier investigations on the Josephson-coupled case. We construct a two-dimensional multi-layer sine-Gordon type model which we map onto a gas of topological excitations. With a special choice of the mass matrix for our field theoretical model, vortex dominated properties of magnetically coupled layered superconductors can be described. The well known interaction potentials of fractional flux vortices are consistently obtained from our field-theoretical analysis, and the physical parameters (vortex fugacity and temperature parameter) are also identified. We analyse the phase structure of the multi-layer sine--Gordon model by a differential renormalization group method for the magnetically coupled case from first principles. The dependence of the transition temperature on the number of layers is found to be in agreement with known results based on other methods.Comment: 7 pages, 1 figure, published in J. Phys.: Condens. Matte
    • …
    corecore