207 research outputs found
Explicit Evidence Systems with Common Knowledge
Justification logics are epistemic logics that explicitly include
justifications for the agents' knowledge. We develop a multi-agent
justification logic with evidence terms for individual agents as well as for
common knowledge. We define a Kripke-style semantics that is similar to
Fitting's semantics for the Logic of Proofs LP. We show the soundness,
completeness, and finite model property of our multi-agent justification logic
with respect to this Kripke-style semantics. We demonstrate that our logic is a
conservative extension of Yavorskaya's minimal bimodal explicit evidence logic,
which is a two-agent version of LP. We discuss the relationship of our logic to
the multi-agent modal logic S4 with common knowledge. Finally, we give a brief
analysis of the coordinated attack problem in the newly developed language of
our logic
Observation of microbial carbonate build-ups growing at methane seeps near the upper boundary of the gas-hydrate stability zone in the Black Sea
Extensive dredge sampling carried out in May-June 2004 in the deeper part of the Dnepr paleo-delta area (NW Black Sea) yielded for the first time chimney-shaped carbonate microbial build-ups, which occur at methane seeps close to upper boundary of the gas-hydrate stability zone (~ 700 m). Carbonate samples taken with a benthic trawl represent fragments of the uppermost, middle and lowest parts of the build-up; they are similar morphologically to those found previously at the shallower and deeper methane seeps in the Black Sea. At the same time, the perforated, plate-like carbonates in the lowest parts of the build-up provide first indications that gas channels are formed during the earliest growth phase of these microbial structures. Stable carbon isotope analyses of the carbonates from the uppermost fragments gave the 5I3C values ranging from -33.7 to -36.6 %o, while the 813C values of the lowest fragments are significantly lighter, varying between -42.0 and -44.6 %o. Oxygen isotopic values also show differences between the samples from the uppermost part of the build-ups, which are composed of a mixture of aragonite and Mg-calcite (5180 = 0.7 to 0.94 %o), and the only Mg-calcite cemented thin slabs of lowest carbonates (5180 = 1.35 to 1.57 96o). The isotope data for carbon and oxygen suggests that carbonates formed as a result of anaerobic microbiological oxiÂdation of methane supplied as a shallower-sourced fluid component from below. The difference in 513C and 5I80 values found in the upper and lowest parts of the build-ups may indicate that more carbon derived from seawater and less hydrate water are involved to the chimney formation during its growth, but this may be also a record of the long-term changes in the near-bottom environments related to evolution of salinity, temperature and anoxic conditions in the Black Sea
Microbial carbonate build-ups at methane seeps near the upper boundary of the gas-hydrate stability zone in the Black Sea: results of EU project CRIMEA
Extensive dredging carried out in May-June 2004 in the deeper parts of the Dnepr paleo-delta area (NW Black Sea) yielded for the first time chimney-shaped carbonate microbial build-ups, which occur at methane seeps close to upper boundary of the gas-hydrate stability zone (~ 700 m). Carbonate samples taken with a benthic trawl represent fragments of the uppermost, middle and lowest parts of the build-up, which are similar to those found previously at the shallower and deeper methane seeps in the Black Sea. At the same time, the holed, plate-like carbonates in the lowest parts of the build-up provide first indications that gas channels are formed during the earliest growth phase of these microbial structures. Stable carbon isotope analyses of the carbonates from the uppermost fragments gave the d13C values ranging from -33.7 to -36.6 pro mil, while the d13C values of the lowermost fragments are significantly lighter, varying between -42.0 and -44.6 pro mil. Both these types of carbonates indicate that a major portion of the carbonate carbon originates from bacterial oxidation of the seeping methane. Oxygen isotopic values also show differences between the more irregular and porous samples from the uppermost part of the build-up, which are composed of a mixture of aragonite and Mg-calcite (d18O = 0.7 to 0.94 pro mil, and the only Mg-calcite cemented thin slabs of lowermost carbonates (d18O = 1.35 to 1.57 pro mil. The difference in d13C/d18O ratio found in the upper and lower parts of the build-up may reflect the changing of the water temperature and salinity during the chimney growth
Asymptotic normalization coefficients (nuclear vertex constants) for and the direct astrophysical S-factors at solar energies
A new analysis of the precise experimental astrophysical S-factors for the
direct capture reaction [A.J.Junghans et al.Phys.Rev. C
68 (2003) 065803 and L.T. Baby et al. Phys.Rev. C 67 (2003) 065805] is carried
out based on the modified two - body potential approach in which the direct
astrophysical S-factor, , is expressed in terms of the
asymptotic normalization constants for and two additional
conditions are involved to verify the peripheral character of the reaction
under consideration. The Woods-Saxon potential form is used for the bound
()- state wave function and for the - scattering wave function.
New estimates are obtained for the ^{\glqq}indirectly measured\grqq values of
the asymptotic normalization constants (the nuclear vertex constants) for the
and at E 115 keV, including =0. These
values of and asymptotic normalization constants have been used for
getting information about the ^{\glqq}indirectly measured\grqq values of the
wave average scattering length and the wave effective range parameters
for - scattering.Comment: 27 pages, 6 figure
Applicability of layered sine-Gordon models to layered superconductors: II. The case of magnetic coupling
In this paper, we propose a quantum field theoretical renormalization group
approach to the vortex dynamics of magnetically coupled layered
superconductors, to supplement our earlier investigations on the
Josephson-coupled case. We construct a two-dimensional multi-layer sine-Gordon
type model which we map onto a gas of topological excitations. With a special
choice of the mass matrix for our field theoretical model, vortex dominated
properties of magnetically coupled layered superconductors can be described.
The well known interaction potentials of fractional flux vortices are
consistently obtained from our field-theoretical analysis, and the physical
parameters (vortex fugacity and temperature parameter) are also identified. We
analyse the phase structure of the multi-layer sine--Gordon model by a
differential renormalization group method for the magnetically coupled case
from first principles. The dependence of the transition temperature on the
number of layers is found to be in agreement with known results based on other
methods.Comment: 7 pages, 1 figure, published in J. Phys.: Condens. Matte
- …