446 research outputs found

    Deterioro cognitivo en la esclerosis múltiple

    Get PDF
    Amongst the varied symptomology of multiple sclerosis is to be fo und the alteration of higher functions (cognitive deficit), which has considerable repercussions on the quality of life of patients. The old descriptions of the disease rarely differentiate cognitive affectation from the more general category of “mental symptoms”, which also includes a broad range of affective disorders. Towards 1960 neuropsychological tests began to be employed, and it was from the 1970s onwards that a clear distinction was drawn between deterioration of the higher functions and psycho-affective aspects in the disease. The pattern of cognitive deterioration in patients with multiple sclerosis is not uniform. During the initial phases of the disease it is, in general, light and it has an insidious start, although inter-individual variability is wide, depending on the predominant pathological alterations in the lesions and on their number and localisation. In more severe cases, it is possible to include within the debatable term of subcortical dementia, intellectual slowness, problems of attention, alterations in abstract reasoning, shortcomings in the resolution of problems and memory dysfunction. It is an almost invariable complication of the advanced stages of the disease, since the lesions characterised by axonal loss affect broad areas of white matter, which determines the deafferentation of several areas of cortical association. There does not appear to be any correlation between cognitive deterioration and the variables of the disease considered in an independent way, such as demographic data, clinical course, alterations of mood, consumption of medicines or fatigue. Although, evidently, the disease’s progressive secondary forms of greater duration and the accumulation of lesions are what present the greatest deterioration. With present-day techniques of neuroimaging it has been possible to show a correlation between cognitive deterioration and the existence of an increase in ventricular size, periventricular lesions and atrophy of the callous body

    Performance evaluation of an ORC unit integrated to a waste heat recovery system in a steel mill

    Get PDF
    Waste heat revalorization creates interesting opportunities to energy intensive industries. In the present project, a large-scale ORC pilot plant along with a waste heat recovery unit (WHRU) in a steel mill has been designed, commissioned and operated. The plant is part of the European Commission funded PITAGORAS project and it has been installed at ORI MARTIN in Brescia (Italy). Waste heat is recovered from the fumes of the Electric Arc Furnace (EAF) to produce saturated steam which is then delivered to a district heating (DH) network during heating season and to the ORC for electricity generation during the rest of the year. The main challenge was the integration of these systems in a single plant since the heat source is highly unstable and steady heat load is preferable for the DH and ORC for their safe operation. A steam accumulator of 150m3 volume was implemented between the WHRU and the ORC/DH systems to maintain a steady discharge pressure, to reduce the fast transients and to extend the supply over longer periods. The ORC has a nominal power output of 1,8MW and the preliminary results of the first weeks of operation of the ORC unit resulted in a net efficiency of 21.7%. Currently the plant is undergoing monitoring campaign which will provide additional data to further evaluate and optimize the system.The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° ENER / FP7EN / 314596 / PITAGORAS

    Noise propagation issues in Belle II pixel detector power cable

    Get PDF
    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This paper presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impact on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics

    Susceptibility characterization of beam pipe radiated noise for the PXD detector in Belle II experiment

    Get PDF
    The new Pixel Vertex Detector (PXD) used in the upgrade of the high energy physics experiment Belle II is based on the DEPFET technology. Since the PXD is 2 mm far from the beam pipe, the effects of radiated interferences may be taken into account. Though the EM wave associated to the beam is very well confined (skin depth), the beam pipe is grounded to the accelerator and it may have noise currents on its external face due to pumps, auxiliary electronics, power converters, etc. which may produce radiated noise (H field). This analysis is part of the EMC approach that covers the analysis of the emissions and immunity characteristics, as well as the coupling phenomena and grounding issues to define the susceptibility levels required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics

    Influencia de la variabilidad en la virulencia de diferentes aislados de Toxoplasma gondii sobre las lesiones de encéfalos fetales ovinos

    Get PDF
    Trabajo presentado a la: XXXII Reunión de la Sociedad Española de Anatomía Patológica Veterinaria (SEAPV). 1 octubre. Congreso virtual.Peer reviewe

    Clinical validation of a novel postural support device for hospitalized sub-acute post stroke wheelchair users

    Get PDF
    Purpose: We present a novel wheelchair posture support device (WPSD) and its clinical validation. The device was developed in order to assure correct sitting posture and to reduce the time spent by caregivers for re-positioning of hospitalized, wheelchair-bound, post-acute stroke patients. Method: The device was validated with 16 subjects during a period of 5 days in which use of the device was compared with regular care practice. Results: The device was used for the five consecutive days in 69% of patients, while for 6% it was not suitable; 25% did not complete the 5 days for reasons unrelated to the device. Caregivers needed to re-position the patients that used the device for the full 5 days (n=11) on an average 52% less often when using the device, as compared to regular practice. Furthermore, the device was rated as usable and functional by the caregivers while significantly reducing perception of trunk and shoulder pain in patients during its use. Conclusions: The newly designed WPSD is a valuable system for the improvement of medical assistance to wheelchair-bound post-stroke patients by reducing pain and number of re-positioning manoeuvres. The WPSD might be applicable to any group of patients who need posture control in either wheelchair or common chair with arms support.The FIK initiative; funding the development of the Varstiff material technology. Fundaci on Bot ın’s ‘‘Mind the Gap’’ program co-funding the design process of the WPSD. Spherium Biomed co-funding the study with the WPSD

    Heterozygous CAPN3 missense variants causing autosomal-dominant calpainopathy in seven unrelated families

    Get PDF
    [Aims] Recessive variants in CAPN3 gene are the cause of the commonest form of autosomal recessive limb girdle muscle dystrophy. However, two distinct in-frame deletions in CAPN3 (NM_000070.3:c.643_663del21 and c.598_621del15) and more recently, Gly445Arg and Arg572Pro substitutions have been linked to autosomal dominant (AD) forms of calpainopathy. We report 21 affected individuals from seven unrelated families presenting with an autosomal dominant form of muscular dystrophy associated with five different heterozygous missense variants in CAPN.[Methods] We have used massively parallel gene sequencing (MPS) to determine the genetic basis of a dominant form of limb girdle muscular dystrophy in affected individuals from seven unrelated families.[Results] The c.700G> A, [p.(Gly234Arg)], c.1327T> C [p.(Ser443Pro], c.1333G> A [p.(Gly445Arg)], c.1661A> C [p.(Tyr554Ser)] and c.1706T> C [p.(Phe569Ser)] CAPN3 variants were identified. Affected individuals presented in young adulthood with progressive proximal and axial weakness, waddling walking and scapular winging or with isolated hyperCKaemia. Muscle imaging showed fatty replacement of paraspinal muscles, variable degrees of involvement of the gluteal muscles, and the posterior compartment of the thigh and minor changes at the mid-leg level. Muscle biopsies revealed mild myopathic changes. Western blot analysis revealed a clear reduction in calpain 3 in skeletal muscle relative to controls. Protein modelling of these variants on the predicted structure of calpain 3 revealed that all variants are located in proximity to the calmodulin-binding site and are predicted to interfere with proteolytic activation.[Conclusions] We expand the genotypic spectrum of CAPN3-associated muscular dystrophy due to autosomal dominant missense variants.This study was funded in part by Instituto de Salud Carlos III through the project PI14/00738 to M. O. (co-funded by European Regional Development Fund. ERDF, a way to build Europe). We thank CERCA Programme / Generalitat de Catalunya for institutional support NGL (APP1117510) and GR (APP1122952) are supported by the Australian National Health and Medical Research Council (NHMRC). This work is also funded by an NHMRC Project Grant (APP1080587).Peer reviewe

    Performance of the ToF detectors in the foot experiment

    Get PDF
    The FOOT (FragmentatiOn Of Target) experiment aims to deter- mine the fragmentation cross-sections of nuclei of interest for particle therapy and radioprotection in space. The apparatus is composed of several detectors that allow fragment identification in terms of charge, mass, energy and direction. The frag- ment time of flight (ToF) along a lever arm of ∼2 m is used for particle ID, requiring a resolution below 100ps to achieve a sufficient resolution in the fragment atomic mass identification. The timing performance of the ToF system evaluated with 12C and 16O beams is reviewed in this contribution

    Measuring the Impact of Nuclear Interaction in Particle Therapy and in Radio Protection in Space: the FOOT Experiment

    Get PDF
    In Charged Particle Therapy (PT) proton or 12C beams are used to treat deep-seated solid tumors exploiting the advantageous characteristics of charged particles energy deposition in matter. For such projectiles, the maximum of the dose is released at the end of the beam range, in the Bragg peak region, where the tumour is located. However, the nuclear interactions of the beam nuclei with the patient tissues can induce the fragmentation of projectiles and/or target nuclei and needs to be carefully taken into account when planning the treatment. In proton treatments, the target fragmentation produces low energy, short range fragments along all the beam path, that deposit a non-negligible dose especially in the first crossed tissues. On the other hand, in treatments performed using 12C, or other (4He or 16O) ions of interest, the main concern is related to the production of long range fragments that can release their dose in the healthy tissues beyond the Bragg peak. Understanding nuclear fragmentation processes is of interest also for radiation protection in human space flight applications, in view of deep space missions. In particular 4He and high-energy charged particles, mainly 12C, 16O, 28Si and 56Fe, provide the main source of absorbed dose in astronauts outside the atmosphere. The nuclear fragmentation properties of the materials used to build the spacecrafts need to be known with high accuracy in order to optimise the shielding against the space radiation. The study of the impact of these processes, which is of interest both for PT and space radioprotection applications, suffers at present from the limited experimental precision achieved on the relevant nuclear cross sections that compromise the reliability of the available computational models. The FOOT (FragmentatiOn Of Target) collaboration, composed of researchers from France, Germany, Italy and Japan, designed an experiment to study these nuclear processes and measure the corresponding fragmentation cross sections. In this work we discuss the physics motivations of FOOT, describing in detail the present detector design and the expected performances, coming from the optimization studies based on accurate FLUKA MC simulations and preliminary beam test results. The measurements planned will be also presented
    corecore