
Susceptibility characterization of beam pipe radiated 
noise for the PXD detector in Belle II experiment 

M.Iglesias  
Instituto Tecnológico de Aragón  

ITAINNOVA   
Zaragoza, Spain 

miglesias@itainnova.es 

F.J. Arcega 
Departamento de Ingeniería Eléctrica 

Universidad de Zaragoza 
Zaragoza, Spain  

A. Pradas  
Instituto Tecnológico de Aragón  

ITAINNOVA   
Zaragoza, Spain 

F. Arteche  
Instituto Tecnológico de Aragón  

ITAINNOVA   
Zaragoza, Spain 

P.Leitl 
Max Planck Institute for Physics 

Werner-Heinsenberg-Institute  
Munich, Germany 

H-G. Moser 
Max Planck Institute for Physics 

Werner-Heinsenberg-Institute 
Munich, Germany  

I. Echeverría  
Instituto Tecnológico de Aragón  

ITAINNOVA   
Zaragoza, Spain 

F.Müller 
Max Planck Institute for Physics 

Werner-Heinsenberg-Institute  
Munich, Germany 

C. Kiesling 
Max Planck Institute for Physics 

Werner-Heinsenberg-Institute 
Munich, Germany  

F.J. Piedrafita  
Instituto Tecnológico de Aragón  

ITAINNOVA   
Zaragoza, Spain 

Abstract—The new Pixel Vertex Detector (PXD) used in the 
upgrade of the high energy physics experiment Belle II is based 
on the DEPFET technology.  Since the PXD is 2 mm far from 
the beam pipe, the effects of radiated interferences may be 
taken into account.  Though the EM wave associated to the 
beam is very well confined (skin depth), the beam pipe is 
grounded to the accelerator and it may have noise currents on 
its external face due to pumps, auxiliary electronics, power 
converters, etc. which may produce radiated noise (H field). 
This analysis is part of the EMC approach that covers the 
analysis of the emissions and immunity characteristics, as well 
as the coupling phenomena and grounding issues to define the 
susceptibility levels required to ensure the successful 
integration of the detector and, specifically, to achieve the 
designed performance of the front-end electronics.  

Keywords —Electromagnetic compatibility; EMC; 
grounding; Susceptibility; particle tracking detectors; PXD  

I. INTRODUCTION  
The Belle II collaboration is aiming for new frontiers in 

the precision measurements of B meson decays with an 
upgraded detector system at the High Energy Accelerator 
Research Organization (KEK) in Tsukuba, Japan. The 
foreseen increase in luminosity of the SuperKEKB 
accelerator by a factor of 40 compared to the previous 
machine requires significant improvements in the detectors. 
To cope with the high density of charged particles close to 
the interaction point and still achieve a resolution of the 
decay vertices of the B mesons in the order of 10µm a new 
vertex detector based on two different technologies has been 
installed in Belle II experiment [1]. The vertex detector 
consists of several modules and front-end electronics (FEE) 
arranged cylindrically in six layers around the interaction 
point. The first two layers are based on DEPFET pixel 
technology [2] whereas the outer four layers are based on 
double-side silicon strip technology [3]. 

The vertex detector is arranged within the BELLE II 
experiment (Fig. 1), a hermetic detector system which 
allows the reconstruction of particle tracks  from  collisions, 
and performs the measurement of energy, momentum, 
particle type and charge of the produced particles.  

The DEPFET detector involves a complex electrical 
system comprising the Front End Electronics (FEE), the 
Power Supplies, cables and connectors. The FEE are very 
sensitive to EM noise and they may radiate through the clock 
and other high frequency signals [4, 5]. 

The Power Supplies can produce EM noise as well, and the 
cables and connectors may propagate EM noise inside and 
outside the FEE [6]. The grounding and shielding strategy 
for the DEPFET detector modules is part of an EMC 
strategy for the characterization of the EM environment of 
the PXD and ensures the correct integration of the FEE. As 
opposite to a PCB where the ground plane is usually clearly 
defined, in the case of the PXD the grounding is more 
complex. The scope of the grounding and shielding plans 
are to define the safety grounding, the signal or ground 

Fig. 1. Belle II experiment with PXD detector. 
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Fig. 2. Beam pipe and PXD detector.
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system susceptibility requires the use of transfer functions, 
which are presented in the next section. 
 

V. NOISE TRANSFER FUCTION 
The susceptibility is quantified using transfer functions 

(TF). These functions relate the noise that is injected into 
the cable (current produced by the injection clamp) with the 
noise disturbance after the readout process (counts). The 
noise TF is defined as the relation between the noise RMS 
variation in the output voltage (Vout) and the Injected 
Common Mode current (ICM) as measured on the test line 
with a current clamp (1).  Since the current is injected at 
different frequencies, each frequency will yield a transfer 
function value. As this function must represent the noise 
contribution of the injected current, thermal noise (noise 
level when no injection is performed) must be subtracted (2) 
[5]: 

  
CM

out
CM I

V
fTF   

 222
thmeasuredout VVV   

If the TF is computed for each pixel (192000) at different 
injection frequencies, the coupling map of the sensor is 
obtained. Representing the electrical map of the sensor pixel 
arrangement in terms of connection to the DCD and 
Switchers, a transfer function color map can be obtained for 
each frequency, which shows the areas of the pixel in which 
noise transfer is higher. DCD2 chip area is not plotted since 
DCD was not operative during the tests. If this map is 
computed for each frequency, the plots in Fig. 9 are 
obtained. This figure shows the TF maps obtained at each 
frequency for the common mode tests performed. 
    

Fig. 9. TF maps for beam noise test. 

If the sensor map is grouped into the area corresponding to 
the DCD1 and the transfer function is plotted along the 
frequency axis for each pixel, the graph in Fig. 10 is 
obtained. In this figure, the average function is computed 
among all the pixels (magenta trace), resulting in the 
average transfer function of the DCD1 area.  

 
Fig. 10. TF per pixel in DCD1 sensor area 

Once the average transfer function is computed for each 
DCD group, the plot in Fig. 11 is obtained. These average 
transfer functions can be fitted to a mathematical model that 
will represent the FEE sensitivity to CM currents flowing in 
the external face of the beam pipe and it could be used to 
establish the noise compatible level of the PXD detector. 

 

Fig. 11. Radiated noise average susceptibility TF per DCD chip sensor area   

VI. LAYOUT EFFECTS 
Several modifications have been implemented on the 

shielding as well as the radiating cable position in order to 
study the coupling effects in different parts of the detector 
(kapton cable, pixel module). Fig. 12 shows the different 
test setups. First, the PXD module is covered with copper 
stripe to achieve a shielding effect (A), which later is 
improved by covering also the back side of the PXD box 
(B). Afterwards, one end of the radiating cable is moved 
apart from the Kapton cable (C), and then the shield 
underneath the cable is moved, leaving this part of the cable 
exposed (D). In (E) the copper enclosure is removed, 
leaving only the shield underneath the cable on top of the 
box. In (F), the cable is moved to be located on one side of 
the Kapton cable, parallel to it, and in (G) the cable is 
located in front of the PXD box. Finally, the cable is 
positioned on top of the Kapton cable perpendicular to it 
(H), and on top of the PXD sensor also perpendicular to it 
(I). This part of the study has been focused on a fixed 
frequency of 10 MHz for the injection as previous results 
showed a higher susceptibility of the system at this 
frequency. For each configuration, the noise present in the 
system is measured in Analog Digital Units (ADU) [14, 15] 
and the results are displayed in table I. 
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Fig. 12. Radiating cable configurations above the PXD module. 

TABLE I.  NOISE MEASURED IN PXD SENSOR 

CONFI-
GURATION 

MEASURED 
CURRENT 

MEASURED 
NOISE 
(ADU) 

CABLE CONFIGURATION 
ABOVE THE PXD MODULE 

(mA) 
A 56 3 With shielding 
B 56 1 Improving shielding 

C 56 1.2 Shield only 
underneath cable 

D 56 3 
Moving the shield so 
that kapton area is 
exposed 

E 56 2 
Removal of shield part 
only on the sensor 
cage 

F 
56 4 

Cable parallel to 
kapton 

G 
158 1.8 

Cable in front of 
sensor 

H 158 1.2 Cable perpendicular 
to kapton 

I 158 1.2 Cable perpendicular 
above the sensor 

 

As the chart shows, higher levels of noise are detected when 
the radiating cable is located near the Kapton cable. 
Depending on the total exposed Kapton cable area to the 
interference magnetic field, higher level of coupled noise is 
obtained.  Also when the shielding over the Kapton is 
removed, an increase in the noise is observed, while hardly 
any increase of noise is observed when the radiation is 
applied near the PXD box. The shield effectiveness comes as 
a result of induced currents flowing in a way that they 
oppose the magnetic field perturbation. Depending of the 
shielding area (covering the PXD module), the impedance of 
the path is decreased and the effect of the coupled noise is 
minimized. 

This shows a noticeable higher susceptibility to radiating 
noise of the Kapton part of the sensor in comparison with 
the PXD module.  

VII. CONCLUSIONS 
 

The susceptibility of a PXD sensor to beam pipe radiation 
has been studied. In order to emulate this noise, a special 
test set-up has been prepared. A noise current is forced to 
flow through a near cable in a way that it creates a magnetic 
field similar to the one radiated by noise current running 
through the external face of the beam pipe. The three tested 
DCD areas present a similar profile. As it can be seen, the 

noise coupling increases with the frequency from 100 kHz 
until 10 MHz, where the function becomes flat.  Several 
configurations have been tested in order to analyze this 
effect in detail, showing that the kapton area is more 
susceptible than the sensor area. As the chart shows, higher 
levels of noise are detected when the radiating cable is 
located near the Kapton cable. After removing the shielding 
above the kapton an increase in the noise is observed, while 
hardly any increase of noise is observed when the radiation 
is exposed near the PXD box. This shows a noticeable 
higher susceptibility to radiating noise of the Kapton part of 
the sensor in comparison with the PXD sensor itself. 
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