2,374 research outputs found

    Feedback in the Antennae Galaxies (NGC 4038/9): I. High-Resolution Infrared Spectroscopy of Winds from Super Star Clusters

    Full text link
    We present high-resolution (R ~ 24,600) near-IR spectroscopy of the youngest super star clusters (SSCs) in the prototypical starburst merger, the Antennae Galaxies. These SSCs are young (3-7 Myr old) and massive (10^5 - 10^7 M_sun for a Kroupa IMF) and their spectra are characterized by broad, extended Br-gamma emission, so we refer to them as emission-line clusters (ELCs) to distinguish them from older SSCs. The Brgamma lines of most ELCs have supersonic widths (60-110 km/s FWHM) and non-Gaussian wings whose velocities exceed the clusters' escape velocities. This high-velocity unbound gas is flowing out in winds that are powered by the clusters' massive O and W-R stars over the course of at least several crossing times. The large sizes of some ELCs relative to those of older SSCs may be due to expansion caused by these outflows; many of the ELCs may not survive as bound stellar systems, but rather dissipate rapidly into the field population. The observed tendency of older ELCs to be more compact than young ones is consistent with the preferential survival of the most concentrated clusters at a given age.Comment: Accepted to Ap

    The internal dynamical equilibrium of HII regions: a statistical study

    Full text link
    We present an analysis of the integrated Halpha emission line profiles for the HII region population of the spiral galaxies NGC 1530, NGC 6951 and NGC 3359. We show that 70% of the line profiles show two or three Gaussian components. The relations between the Halpha luminosity and non-thermal line width for the HII regions of the three galaxies are studied and compared with the relation found taken all the HII regions of the three galaxies as a single distribution. A clearer envelope in non-thermal line width is found when only those HII regions with non-thermal line width bigger than 13kms are considered. The linear fit for the envelope is logL=36.8+2.0*log(sigma). The masses of the HII regions on the envelope using the virial theorem and the mass estimates from the Halpha luminosity are comparable, which offers evidence that the HII regions on the envelope are virialized systems, while the remaining regions, the majority, are not in virial equilibrium.Comment: 19 pages, 10 figures,accepted for publication in A&

    GeoZui3D: Data Fusion for Interpreting Oceanographic Data

    Get PDF
    GeoZui3D stands for Geographic Zooming User Interface. It is a new visualization software system designed for interpreting multiple sources of 3D data. The system supports gridded terrain models, triangular meshes, curtain plots, and a number of other display objects. A novel center of workspace interaction method unifies a number of aspects of the interface. It creates a simple viewpoint control method, it helps link multiple views, and is ideal for stereoscopic viewing. GeoZui3D has a number of features to support real-time input. Through a CORBA interface external entities can influence the position and state of objects in the display. Extra windows can be attached to moving objects allowing for their position and data to be monitored. We describe the application of this system for heterogeneous data fusion, for multibeam QC and for ROV/AUV monitoring

    Benchmark of a modified Iterated Perturbation Theory approach on the 3d FCC lattice at strong coupling

    Full text link
    The Dynamical Mean-Field theory (DMFT) approach to the Hubbard model requires a method to solve the problem of a quantum impurity in a bath of non-interacting electrons. Iterated Perturbation Theory (IPT) has proven its effectiveness as a solver in many cases of interest. Based on general principles and on comparisons with an essentially exact Continuous-Time Quantum Monte Carlo (CTQMC) solver, here we show that the standard implementation of IPT fails away from half-filling when the interaction strength is much larger than the bandwidth. We propose a slight modification to the IPT algorithm that replaces one of the equations by the requirement that double occupancy calculated with IPT gives the correct value. We call this method IPT-DD. We recover the Fermi liquid ground state away from half-filling. The Fermi liquid parameters, density of states, chemical potential, energy and specific heat on the FCC lattice are calculated with both IPT-DD and CTQMC as benchmark examples. We also calculated the resistivity and the optical conductivity within IPT-DD. Particle-hole asymmetry persists even at coupling twice the bandwidth. Several algorithms that speed up the calculations are described in appendices.Comment: 17 pages, 15 figures, minor changes to improve clarit

    Kinetostatic Analysis and Solution Classification of a Planar Tensegrity Mechanism

    Full text link
    Tensegrity mechanisms have several interesting properties that make them suitable for a number of applications. Their analysis is generally challenging because the static equilibrium conditions often result in complex equations. A class of planar one-degree-of-freedom (dof) tensegrity mechanisms with three linear springs is analyzed in detail in this paper. The kinetostatic equations are derived and solved under several loading and geometric conditions. It is shown that these mechanisms exhibit up to six equilibrium configurations, of which one or two are stable. Discriminant varieties and cylindrical algebraic decomposition combined with Groebner base elimination are used to classify solutions as function of the input parameters.Comment: 7th IFToMM International Workshop on Computational Kinematics, May 2017, Poitiers, France. 201

    Expansive components in H II regions

    Full text link
    We study the presence of low intensity high velocity components, which we have termed wing features in the integrated Halpha emission line profiles of the HII region populations of the spiral barred galaxies NGC 1530, NGC 3359 and NGC 6951. We find that more than a third of the HII region line profiles in each galaxy show these components. The highest fraction is obtained in the galaxy whose line profiles show the best S:N, which suggests that wing features of this type may well exist in most, if not all, HII region line profiles. Applying selection criteria to the wing features, we obtain a sample of HII regions with clearly defined high velocity components in their profiles. Deconvolution of a representative sample of the line profiles eliminates any doubt that the wing features could possibly be due to instrumental effects. We present an analysis of the high velocity low intensity features fitting them with Gaussian functions; the emission measures, central velocities and velocity dispersions for the red and blue features take similar values. We interpret the features as signatures of expanding shells inside the HII regions. Up to a shell radius of R(shell)~0.2R(reg), the stellar winds from the central ionizing stars appear to satisfy the energy and momentum requirements for the formation and driving the shell. Several examples of the most luminous HII regions show that the shells appear to have larger radii; in these cases additional mechanisms may well be needed to explain the kinetic energies and momenta of the shells.Comment: 16 pages, 9 figures, accepted for publication in A&

    Fusing Information in a 3D Chart-of-the-Future Display

    Get PDF
    The Data Visualization Research Lab at the Center for Coastal and Ocean Mapping is investigating how three-dimensional navigational displays can most effectively be constructed. This effort is progressing along multiple paths and is implemented in the GeoNav3D system, a 3D chart-of-the-future research prototype. We present two lines of investigation here. First, we explore how tide, depth, and planning information can be combined (fused) into a single view, in order to give the user a more realistic picture of effective water depths. In the GeoNav3D system, 3D shaded bathymetry, coded for color depth, is used to display navigable areas. As in ENC displays, different colors are used to easily identify areas that are safe, areas where under-keel clearance is minimal, and areas where depths are too shallow. Real-time or model-generated tide information is taken into account in dynamically color-coding the depths. One advantage to using a continuous bathymetric model, versus discrete depth areas, is that the model can be continuously adjusted for water level. This concept is also extended for planning purposes by displaying the color-coded depths along a proposed corridor at the expected time of reaching each point. In our second line of investigation, we explore mechanisms for linking information from multiple 3D views into a coherent whole. In GeoNav3D, it is possible to create a variety of plan and perspective views, and these views can be attached to moving reference frames. This provides not only semi-static views such as from-the-bridge and under-keel along-track profile views, but also more dynamic, interactive views. These views are linked through visual devices that allow the fusion of information from among the views. We present several such devices and show how they highlight relevant details and help to minimize user confusion. Investigation into the utility of various linked views for aiding realsituation decision-making is ongoin
    corecore