204 research outputs found

    Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds

    Get PDF
    A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients’ quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies). The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about the beneficial or inert effects of those natural origin occurring materials, the scientific community leads towards the identification of the main active components involved and their mechanism of action during the corresponding healing, antimicrobial, or regenerative processes and in carrying out systematic and comparative controlled tests. Once those natural origin components have been identified and their efficacy validated through solid clinical trials, their combination within nanostructured dressings can open up new avenues in the fabrication of bioactive dressings with outstanding characteristics for wound care. The motivation of this work is to analyze the state of the art in the use of different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring materials as antimicrobial, anti-inflammatory and regenerative components with the aim of clarifying their potential clinical use in bioactive dressings. We conclude that, for those natural occurring materials, more clinical trials are needed to reach a sufficient level of evidence as therapeutic agents for wound healing management.properties together wit

    Evaluation of the antimicrobial activity and cytotoxicity of different components of natural origin present in essential oils

    Get PDF
    Even though essential oils (EOs) have been used for therapeutic purposes, there is now a renewed interest in the antimicrobial properties of phytochemicals and EOs in particular. Their demonstrated low levels of induction of antimicrobial resistance make them interesting for bactericidal applications, though their complex composition makes it necessary to focus on the study of their main components to identify the most effective ones. Herein, the evaluation of the antimicrobial action of different molecules present in EOs against planktonic and biofilm-forming Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was assessed. The bactericidal mechanisms of the different molecules, as well as their cytocompatibility, were also studied. Carvacrol, cinnamaldehyde, and thymol exhibit the highest in vitro antimicrobial activities against E. coli and S. aureus, with membrane disruption the bactericidal mechanism identified. The addition of those compounds (=0.5 mg/mL) hampers S. aureus biofilm formation and partially eliminates preformed biofilms. The subcytotoxic values of the tested EO molecules (0.015–0.090 mg/mL) are lower than the minimum inhibitory and bactericidal concentrations obtained for bacteria (0.2–0.5 mg/mL) but are higher than that obtained for chlorhexidine (0.004 mg/mL), indicating the reduced cytotoxicity of EOs. Therefore, carvacrol, cinnamaldehyde, and thymol are molecules contained in EOs that could be used against E. coli– and S. aureus–mediated infections without a potential induction of bactericidal resistance and with lower cell toxicity than the conventional widely used chlorhexidine

    Submicronic Filtering Media Based on Electrospun Recycled PET Nanofibers: Development, Characterization, and Method to Manufacture Surgical Masks

    Get PDF
    The disposal of single-use personal protective equipment has brought a notable environmental impact in the context of the COVID-19 pandemic. During these last two years, part of the global research efforts has been focused on preventing contagion using nanotechnology. This work explores the production of filter materials with electrohydrodynamic techniques using recycled polyethylene terephthalate (PET). PET was chosen because it is one of the materials most commonly present in everyday waste (such as in food packaging, bags, or bottles), being the most frequently used thermoplastic polymer in the world. The influence of the electrospinning parameters on the filtering capacity of the resulting fabric was analyzed against both aerosolized submicron particles and microparticulated matter. Finally, we present a new scalable and straightforward method for manufacturing surgical masks by electrospinning and we validate their performance by simulating the standard conditions to which they are subjected to during use. The masks were successfully reprocessed to ensure that the proposed method is able to reduce the environmental impact of disposable face masks. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Rapid on-Chip Assembly of Niosomes: Batch versus Continuous Flow Reactors

    Get PDF
    The large-scale continuous production of niosomes remains challenging. The inherent drawbacks of batch processes such as large particle polydispersity and reduced batch-to-batch reproducibility are here overcome by using commercially available microfluidic reactors. Compared to the traditional batch-based film hydration method, herein, we demonstrate that it is possible to carry out the homogeneous, large-scale (up to 120 mg/min) production of niosomes using two different synthesis techniques (the thin film hydration method and the emulsification technique). Niosomes particle size can be controlled depending on the need by varying the synthesis temperature. The high cytocompatibility of the resulting niosomes was also demonstrated in this work on three different somatic cell lines. For the first time, the structure of the niosome multilamellar shell was also elucidated using high-resolution transmission electron microscopy (HR-STEM) as well as their colloidal stability over time (6 weeks) under different storage conditions. The morphology of cryo-protected or as-made niosomes was also evaluated by HR-STEM after freeze-drying. Finally, the dual ability of those synthetic, nonionic, surfactant-based vesicles to carry both hydrophilic and hydrophobic molecules was also here demonstrated by using laser scanning confocal microscopy

    A selective strategy for targeting primary hyperoxaluria diseases

    Get PDF
    Funding Information: Authors wish to thank the Centro de Instrumentación Científico-Técnica (CICT) of the University of Jaén, Spain, for partial financial support. A.A.-A. is grateful for the postdoctoral fellowship from Fundación Alfonso Martín Escudero. Authors acknowledge the use of the National Facility ELECMI ICTS, node “Laboratorio de Microscopias Avanzadas” at Universidad de Zaragoza. This research has also partially been supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (grant RTI2018-098560-B-C22) and by the Andalusian Consejería de Economía y Conocimiento (FEDER program 2014-2020: grant number 1380682). This work was partially supported by the Associate Laboratory for Green Chemistry-LAQV, which is financed by national funds from FCT/MCTES (UIDB/50006/2020). Funding Information: This research has also partially been supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (grant RTI2018-098560-B-C22) and by the Andalusian Consejería de Economía y Conocimiento (FEDER program 2014-2020: grant number 1380682). This work was partially supported by the Associate Laboratory for Green Chemistry-LAQV, which is financed by national funds from FCT/MCTES (UIDB/50006/2020). Funding Information: Authors wish to thank the Centro de Instrumentación Científico-Técnica (CICT) of the University of Jaén, Spain, for partial financial support. A.A.-A. is grateful for the postdoctoral fellowship from Fundación Alfonso Martín Escudero. Authors acknowledge the use of the National Facility ELECMI ICTS, node “Laboratorio de Microscopias Avanzadas” at Universidad de Zaragoza. Publisher Copyright: © 2022 The Author(s)Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism that result in an excess of oxalate production by the oxidation of glyoxylate by the human lactate dehydrogenase A enzyme (hLDHA). The selective liver inhibition of this enzyme is one of the therapeutic strategies followed in the treatment of this disease. Even though several efforts have been recently performed using gene silencing by the RNA interference approach, small-molecule inhibitors that selectively reach hepatocytes are preferred since they present the advantages of a lower production cost and better pharmacological properties. In that sense, the design, synthesis, and physicochemical characterization by NMR, FTIR, DLS and TEM of two nanocarriers based on chitosan conjugates (1, non-redox-sensitive; 2, redox-sensitive) have been performed to (i) achieve the selective transport of hLDHA inhibitors into hepatocytes and (ii) their disruption once they reach the hepatocytes cytosol. Polymer 2 self-assembled into micelles in water and showed high drug loadings (19.8–24.5 %) and encapsulation efficiencies (31.9–40.8%) for the hLDHA inhibitors (I-III) tested. The non-redox-sensitive micelle 1 remained stable under different glutathione (GSH) concentrations (10 μM and 10 mM), and just a residual release of the inhibitor encapsulated was observed (less than 10 %). On the other hand, micelle 2 was sufficiently stable under in vitro physiological conditions (10 μM, GSH) but it quickly disassembled under the simulated reducing conditions present inside hepatocytes (10 mM GSH), achieving a 60 % release of the hLDHA inhibitor encapsulated after 24 h, confirming the responsiveness of the developed carrier to the high levels of intracellular GSH.publishersversionpublishe

    Pharmacokinetic control on the release of antimicrobial drugs from pH-responsive electrospun wound dressings

    Get PDF
    The acidic pH of healthy skin changes during wound healing due to the exposure of the inner dermal and subcutaneous tissue and due to the potential colonization of pathogenic bacteria. In chronic non-healing wounds, the pH values vary in a wide pH range but the appearance of an alkaline shift is common. After a wound is incurred, neutral pH in the wound bed is characteristic of the activation of the cascade of regenerative and remodeling processes. In order to adjust drug release to the specific pH of the wound, herein, drug-loaded wound dressings having pH-responsiveness containing antiseptics and antibiotics and exerting different release kinetics in order to have a perfect match between the drug release kinetics, and the pH conditions of each wound type, were developed. We have fabricated drug-loaded electrospun nanofibers loaded with the antiseptic chlorhexidine, with the broad-spectrum antibiotic rifampicin, and with the antimicrobial of natural origin thymol, using the pH-dependent methacrylic acid copolymer Eudragit® L100-55, which dissolves at pH > 5.5; those drugs were loaded within Eudragit® S100, which dissolves at pH > 7 and, finally, within the methacrylic ester copolymer Eudragit® RS100 which is pH independent and slowly erodes and releases its contained cargo. The antibacterial action of those advanced wound dressings has been evaluated against methicillin-sensitive S. aureus Newman strain expressing the coral green fluorescent protein (cGFP), as a model of a Gram-positive bacteria, and against E. coli S17 strain as a model of a Gram-negative bacteria. It was demonstrated that those combinational products integrate in one device the required characteristics for a wound dressing with the therapeutic action of a contained active principle and can be selected depending on the wound acidic or alkaline status for its appropriated management. © 2022 The Author(s

    Nanoengineered implant as a new platform for regenerative nanomedicine using 3D well-organized human cell spheroids

    Get PDF
    In tissue engineering, it is still rare today to see clinically transferable strategies for tissue-engineered graft production that conclusively offer better tissue regeneration than the already existing technologies, decreased recovery times, and less risk of complications. Here a novel tissue-engineering concept is presented for the production of living bone implants combining 1) a nanofibrous and microporous implant as cell colonization matrix and 2) 3D bone cell spheroids. This combination, double 3D implants, shows clinical relevant thicknesses for the treatment of an early stage of bone lesions before the need of bone substitutes. The strategy presented here shows a complete closure of a defect in nude mice calvaria after only 31 days. As a novel strategy for bone regenerative nanomedicine, it holds great promises to enhance the therapeutic efficacy of living bone implants

    Efficiency of Antimicrobial Electrospun Thymol-Loaded Polycaprolactone Mats in Vivo

    Get PDF
    Due to the prevalence of antimicrobial resistant pathogens, natural products with long-term antimicrobial activities are considered as potential alternatives. In this work, polycaprolactone (PCL) electrospun fibers with mean diameters around 299 nm and loaded with 14.92 ± 1.31% w/w thymol (THY) were synthesized. The mats had appropriate elongation at break (74.4 ± 9.5%) and tensile strength (3.0 ± 0.5 MPa) to be potentially used as wound dressing materials. In vivo studies were performed using eight to ten week-old male SKH1 hairless mice. The infection progression was evaluated through a semiquantitative method and quantitative polymerase chain reaction. The analyses of post-mortem samples indicated that THY-loaded PCL fibers acted as inhibitors of Staphylococcus aureus ATCC 25923 strain growth being as efficient as chlorhexidine (CLXD). Histopathological and immunohistochemical studies showed that the PCL-THY-treated wounds were almost free of an inflammatory reaction. Therefore, wound dressings containing natural compounds can prevent infection and promote wound healing and prompt regeneration. Copyrigh

    Drug-eluting wound dressings having sustained release of antimicrobial compounds

    Get PDF
    Wound healing is a complex and costly public health problem that should be timely addressed to achieve a rapid and adequate tissue repair avoiding or even eliminating potential pathogenic infection. Chronic infected non-healing wounds represent a serious concern for health care systems. Efficient wound dressings with tailored therapy having the best response and highest safety margin for the management of chronic non-healing wounds are still needed. The use of novel wound dressing materials has emerged as a promising tool to fulfil these requirements. In this work, asymmetric electrospun polycaprolactone (PCL)-based nanofibers (NFs) were decorated with electrosprayed poly(lactic-co-glycolic acid) microparticles (PLGA MPs) containing the natural antibacterial compound thymol (THY) in order to obtain drug eluting antimicrobial dressings having sustained release. The synthesized dressings successfully inhibited the in vitro growth of Staphylococcus aureus ATCC 25923, showing also at the same doses cytocompatibility on human dermal fibroblasts and keratinocyte cultures after treatment for 24 h, which was not observed when using free thymol. An in vivo murine excisional wound splinting model, followed by the experimental infection of the wounds with S. aureus and their treatment with the synthesized dressings, pointed to the reduction of the bacterial load in wounds after 7 days, though the total elimination of the infection was not reached. The findings indicated the relevance of the direct contact between the dressings and the bacteria, highlighting the need to tune their design considering the wound surface and the nature of the antimicrobial cargo contained

    The Potential Role of Everlasting Flower (Helichrysum stoechas Moench) as an Antihypertensive Agent: Vasorelaxant Effects in the Rat Aorta

    Get PDF
    Helichrysum stoechas (L.) Moench (H. stoechas) is a medicinal plant traditionally used in the Iberian Peninsula to treat different disorders such as arterial hypertension. The aim of this study was to investigate the vascular effects of a polyphenolic methanolic extract of H. stoechas, which has high antioxidant activity, and its mechanism of action. Isometric myography studies were performed in an organ bath with rat aortic rings with intact endothelium. The H. stoechas extract produced vasorelaxation in the aortic rings that were precontracted by phenylephrine or KCl. L-NAME and Rp-8-Br-PET-cGMPS but not indomethacin or H-89; it also reduced the relaxant response evoked by H. stoechas extract on the phenylephrine-induced contractions. H. stoechas extract reduced the response to CaCl2 similar to verapamil and reduced the phenylephrine-induced contractions comparable with heparin. TRAM-34, apamin and glibenclamide reduced relaxation induced by the H. stoechas extract. The combination of L-NAME+TRAM-34+apamin almost completely inhibited the H. stoechas-induced effect. In conclusion, the relaxant effect of the H. stoechas extract is partially mediated by endothelium through the activation of the NO/PKG/cGMP pathway and the opening of Ca2+-activated K+ channels. Furthermore, the decrease in the cytosolic Ca2+ by the inhibition of Ca2+ influx through the L-type Ca2+ channels and by the reduction of Ca2+ release from the sarcoplasmic reticulum via the IP3 pathway is also involved. © 2022 by the authors. Licensee MDPI, Basel, Switzerland
    corecore