91 research outputs found

    Using Large Language Models to Simulate Multiple Humans and Replicate Human Subject Studies

    Full text link
    We introduce a new type of test, called a Turing Experiment (TE), for evaluating how well a language model, such as GPT-3, can simulate different aspects of human behavior. Unlike the Turing Test, which involves simulating a single arbitrary individual, a TE requires simulating a representative sample of participants in human subject research. We give TEs that attempt to replicate well-established findings in prior studies. We design a methodology for simulating TEs and illustrate its use to compare how well different language models are able to reproduce classic economic, psycholinguistic, and social psychology experiments: Ultimatum Game, Garden Path Sentences, Milgram Shock Experiment, and Wisdom of Crowds. In the first three TEs, the existing findings were replicated using recent models, while the last TE reveals a "hyper-accuracy distortion" present in some language models.Comment: Added Turing Experiment (TE) framing and Wisdom of Crowds T

    Using an ecological framework to design mobile technologies for pediatric asthma management

    Get PDF
    ABSTRACT Mobile technologies, due to their ubiquitous nature, play an important role in supporting health care. However, it is not easy to design useful integrated mobile services without a systematic understanding of users, and this is especially true for children. Therefore, we propose a new theoretical perspective for generating design concepts in the early stage of the design process. Our ecological model is based on Ecological Systems Theory which approaches development in terms of the child's relationships and environmental context. It leverages the fact that mobile technologies are deeply involved with users' circumstances. We argue that the ecological model can provide a heuristic to help researchers understand users' needs in context and generate concepts logically and creatively. Here we explore pediatric asthma management as a case study for this model. Finally, five promising mobile technology concepts are provided as examples for further development of mobile technologies related to pediatric asthma management

    Use of a Novel Imaging Technology for Remote Autism Diagnosis: A Reflection on Experience of Stakeholders

    Get PDF
    AbstractTimely diagnosis and early interventions are critical to improving the long term functioning of a child with ASD. However, a major challenge facing parents is difficulty in obtaining on-time access to appropriate diagnostic services. To address this need, an imaging technology, NODA® (Naturalistic Observation Diagnostic Assessment), has been successfully developed and field-tested. NODA® includes 1) NODA SmartCapture; a smart-phone based recording system for parents to capture and share in-home video evidence of their child behavior and 2) NODA Connect; a HIPPA compliant web-platform for diagnosticians to conduct remote autism diagnostic assessments based on in-home video evidence of behavior, developmental history and their clinical judgment. In the field study, parents captured and shared videos evidence from their homes via NODA SmartCapture and diagnosticians conducted remote diagnostic assessment via NODA Connect. Results show that parents were able to successfully collect video evidence of behavior as per given prescription and diagnosticians were able to complete remote diagnostic assessments. This paper is a reflection on the first hand experience of key stakeholders (parents and diagnosticians) using NODA® in the field

    Fully robotic social environment for teaching and practicing affective interaction: Case of teaching emotion recognition skills to children with autism spectrum disorder, a pilot study

    Get PDF
    21st century brought along a considerable decrease in social interactions, due to the newly emerged lifestyle around the world, which became more noticeable recently of the COVID-19 pandemic. On the other hand, children with autism spectrum disorder have further complications regarding their social interactions with other humans. In this paper, a fully Robotic Social Environment (RSE), designed to simulate the needed social environment for children, especially those with autism is described. An RSE can be used to simulate many social situations, such as affective interpersonal interactions, in which observational learning can take place. In order to investigate the effectiveness of the proposed RSE, it has been tested on a group of children with autism, who had difficulties in emotion recognition, which in turn, can influence social interaction. An A-B-A single case study was designed to show how RSE can help children with autism recognize four basic facial expressions, i.e., happiness, sadness, anger, and fear, through observing the social interactions of two robots speaking about these facial expressions. The results showed that the emotion recognition skills of the participating children were improved. Furthermore, the results showed that the children could maintain and generalize their emotion recognition skills after the intervention period. In conclusion, the study shows that the proposed RSE, along with other rehabilitation methods, can be effective in improving the emotion recognition skills of children with autism and preparing them to enter human social environments

    Characterizing 51 Eri b from 1-5 μ\mum: a partly-cloudy exoplanet

    Full text link
    We present spectro-photometry spanning 1-5 μ\mum of 51 Eridani b, a 2-10 MJup_\text{Jup} planet discovered by the Gemini Planet Imager Exoplanet Survey. In this study, we present new K1K1 (1.90-2.19 μ\mum) and K2K2 (2.10-2.40 μ\mum) spectra taken with the Gemini Planet Imager as well as an updated LPL_P (3.76 μ\mum) and new MSM_S (4.67 μ\mum) photometry from the NIRC2 Narrow camera. The new data were combined with JJ (1.13-1.35 μ\mum) and HH (1.50-1.80 μ\mum) spectra from the discovery epoch with the goal of better characterizing the planet properties. 51 Eri b photometry is redder than field brown dwarfs as well as known young T-dwarfs with similar spectral type (between T4-T8) and we propose that 51 Eri b might be in the process of undergoing the transition from L-type to T-type. We used two complementary atmosphere model grids including either deep iron/silicate clouds or sulfide/salt clouds in the photosphere, spanning a range of cloud properties, including fully cloudy, cloud free and patchy/intermediate opacity clouds. Model fits suggest that 51 Eri b has an effective temperature ranging between 605-737 K, a solar metallicity, a surface gravity of log\log(g) = 3.5-4.0 dex, and the atmosphere requires a patchy cloud atmosphere to model the SED. From the model atmospheres, we infer a luminosity for the planet of -5.83 to -5.93 (logL/L\log L/L_{\odot}), leaving 51 Eri b in the unique position as being one of the only directly imaged planet consistent with having formed via cold-start scenario. Comparisons of the planet SED against warm-start models indicates that the planet luminosity is best reproduced by a planet formed via core accretion with a core mass between 15 and 127 M_{\oplus}.Comment: 27 pages, 19 figures, Accepted for publication in The Astronomical Journa

    Characterizing 51 Eri b from 1 to 5 μm : a partly cloudy exoplanet

    Get PDF
    Funding: This work was supported by NSF grants AST-1411868 (A.R., J.L.P., B.M.), AST-1518332 (R.J.D.R.), and DGE-1311230 (K.W.D.). F.M. and E.N. are supported by NASA Grant NNX14AJ80G. This work was supported by Fonds de Recherche du Québec (J.R., R.D., D.L.). K.M.M. and T.S.B. are supported by the NASA Exoplanets Research Program (XRP) by cooperative agreement NNX16AD44G. G.V. and J.K.W. acknowledge JPL’s ESI program for GPI-related funding.We present spectrophotometry spanning 1–5 μm of 51 Eridani b, a 2–10 MJup planet discovered by the Gemini Planet Imager Exoplanet Survey. In this study, we present new K1 (1.90–2.19 μm) and K2 (2.10–2.40 μm) spectra taken with the Gemini Planet Imager as well as an updated LP (3.76 μm) and new MS (4.67 μm) photometry from the NIRC2 Narrow camera. The new data were combined with J (1.13–1.35 μm) and H (1.50–1.80 μm) spectra from the discovery epoch with the goal of better characterizing the planet properties. The 51 Eri b photometry is redder than field brown dwarfs as well as known young T-dwarfs with similar spectral type (between T4 and T8), and we propose that 51 Eri b might be in the process of undergoing the transition from L-type to T-type. We used two complementary atmosphere model grids including either deep iron/silicate clouds or sulfide/salt clouds in the photosphere, spanning a range of cloud properties, including fully cloudy, cloud-free, and patchy/intermediate-opacity clouds. The model fits suggest that 51 Eri b has an effective temperature ranging between 605 and 737 K, a solar metallicity, and a surface gravity of log(g) = 3.5–4.0 dex, and the atmosphere requires a patchy cloud atmosphere to model the spectral energy distribution (SED). From the model atmospheres, we infer a luminosity for the planet of −5.83 to −5.93 (log L/L⊙), leaving 51 Eri b in the unique position of being one of the only directly imaged planets consistent with having formed via a cold-start scenario. Comparisons of the planet SED against warm-start models indicate that the planet luminosity is best reproduced by a planet formed via core accretion with a core mass between 15 and 127 M⊕.Publisher PDFPeer reviewe
    corecore