4 research outputs found

    Electrochemical impedance modelling of the reactivities of dendrimeric poly(propylene imine) DNA nanobiosensors

    Get PDF
    Philosophiae Doctor - PhDIn this thesis, I present the electrochemical studies of three dendrimeric polypropylene imine (PPI) nanomaterials and their applications as a platform in the development of a novel label free DNA nanobiosensor based on electrochemical impedance spectroscopy. Cyclic voltammetry (CV), differentia pulse voltammetry (DPV), square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques were used to study and model the electrochemical reactivities of the nanomaterials on glassy carbon electrode (GCE) as the working electrode.South Afric

    An electrochemical cholesterol biosensor based on a CdTe/CdSe/ZnSe quantum dots—poly (Propylene Imine) dendrimer nanocomposite immobilisation layer

    Get PDF
    Abstract: We report the preparation of poly (propylene imine) dendrimer (PPI) and CdTe/CdSe/ZnSe quantum dots (QDs) as a suitable platform for the development of an enzyme-based electrochemical cholesterol biosensor with enhanced analytical performance. The mercaptopropionic acid (MPA)-capped CdTe/CdSe/ZnSe QDs was synthesized in an aqueous phase and characterized using photoluminescence (PL) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-ray power diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy. The absorption and emission maxima of the QDs red shifted as the reaction time and shell growth increased, indicating the formation of CdTe/CdSe/ZnSe QDs. PPI was electrodeposited on a glassy carbon electrode followed by the deposition (by deep coating) attachment of the QDs onto the PPI dendrimer modified electrode using 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS) as a coupling agent. The biosensor was prepared by incubating the PPI/QDs modified electrode into a solution of cholesterol oxidase (ChOx) for 6 h. The modified electrodes were characterized by voltammetry and impedance spectroscopy. Since efficient electron transfer process between the enzyme cholesterol oxidase (ChOx) and the PPI/QDs-modified electrode was achieved, the cholesterol biosensor (GCE/PPI/QDs/ChOx) was able to detect cholesterol in the range 0.1–10 mM with a detection limit (LOD) of 0.075 mM and sensitivity of 111.16 µA mM−1 cm−2. The biosensor was stable for over a month and had greater selectivity towards the cholesterol molecule

    Bio-adsorbents for the Removal of Heavy Metals from Water

    Get PDF
    The work represents the bio-adsorption of arsenic(III) from standard solutions and real water samples using a powdered avocado seed as a bio-adsorbent. The adsorbent was synthesized, demineralized, and characterized by X-ray diffraction (XRD), scanning electron microscope coupled with energy dispersive spectroscopy (SEM-EDS), Fourier transformation infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) theory. Batch adsorption studies were carried out by using avocado seed, and AsIII was analyzed by using inductively coupled plasma optical emission spectroscopy (ICPOES) after optimizing the following parameters: pH 6, analyte concentration 2 mg L−1, bio-adsorbent dosage 0.8 g, contact time 120 min between analyte and adsorbent, and temperature from 22 to 40°C. The adsorption capacity of 93.75 mg/g was obtained, and the Langmuir isotherm was adopted by the adsorbent due to the chemisorption that occurs on the surface between the functional groups of the bio-adsorbent and AsIII
    corecore