252 research outputs found

    Elastic neutron scattering in Quantum Critical Antiferromagnet Cr0.963_{0.963}V0.037_{0.037}

    Full text link
    We have performed elastic neutron scattering studies of the quantum critical antiferromagnet Cr0.963_{0.963}V0.037_{0.037}. We have found that unlike pure Cr, which orders at two incommensurate wavevectors, Cr0.963_{0.963}V0.037_{0.037} orders at four incommensurate and one commensurate wavevectors. We have found strong temperature dependent scattering at the commensurate and incommensurate wavevectors below 250 K. Results indicate that the primary effect of V doping on Cr is the modification of the nesting conditions of the Fermi surface and not the decreasing of the Neel temperature.Comment: 2 pages, 2 figures, submitted to SCES07 (to be published in Physica B), typos correcte

    On the validity of the linear speed selection mechanism for fronts of the nonlinear diffusion equation

    Full text link
    We consider the problem of the speed selection mechanism for the one dimensional nonlinear diffusion equation ut=uxx+f(u)u_t = u_{xx} + f(u). It has been rigorously shown by Aronson and Weinberger that for a wide class of functions ff, sufficiently localized initial conditions evolve in time into a monotonic front which propagates with speed cc^* such that 2f(0)c<2sup(f(u)/u)2 \sqrt{f'(0)} \leq c^* < 2 \sqrt{\sup(f(u)/u)}. The lower value cL=2f(0)c_L = 2 \sqrt{f'(0)} is that predicted by the linear marginal stability speed selection mechanism. We derive a new lower bound on the the speed of the selected front, this bound depends on ff and thus enables us to assess the extent to which the linear marginal selection mechanism is valid.Comment: 9 pages, REVTE

    Hidden non-Fermi liquid behavior due to crystal field quartet

    Full text link
    We study a realistic Kondo model for crystal field quartet ground states having magnetic and non-magnetic (quadrupolar) exchange couplings with conduction electrons, using the numerical renormalization group method. We focus on a local effect dependent on singlet excited states coupled to the quartet, which reduces the non-magnetic coupling significantly and drives non-Fermi liquid behavior observed in the calculated quadrupolar susceptibility. A crossover from the non-Fermi liquid state to the Fermi liquid state is characterized by a small energy scale very sensitive to the non-magnetic coupling. On the other hand, the Kondo temperature observed in the magnetic susceptibility is less sensitive. The different crystal-field dependence of the two exchange couplings may be related to the different xx dependence of quadrupolar and magnetic ordering temperatures in Cex_xLa1x_{1-x}B6_6.Comment: 7 pages, 5 EPS figures, REVTe

    Quantum phase transitions in the Bose-Fermi Kondo model

    Full text link
    We study quantum phase transitions in the Bose-Fermi Kondo problem, where a local spin is coupled to independent bosonic and fermionic degrees of freedom. Applying a second order expansion in the anomalous dimension of the Bose field we analyze the various non-trivial fixed points of this model. We show that anisotropy in the couplings is relevant at the SU(2) invariant non Fermi liquid fixed points studied earlier and thus the quantum phase transition is usually governed by XY or Ising-type fixed points. We furthermore derive an exact result that relates the anomalous exponent of the Bose field to that of the susceptibility at any finite coupling fixed point. Implications on the dynamical mean field approach to locally quantum critical phase transitions are also discussed.Comment: 13 pages, 9 figures, some references added/correcte

    Non-Fermi liquid behavior and scaling of low frequency suppression in optical conductivity spectra of CaRuO3_3

    Full text link
    Optical conductivity spectra σ1(ω)\sigma_1(\omega) of paramagnetic CaRuO3_3 are investigated at various temperatures. At T=10 K, it shows a non-Fermi liquid behavior of σ1(ω)1/ω12\sigma_1(\omega)\sim 1/{\omega}^{\frac 12}, similar to the case of a ferromagnet SrRuO3_3. As the temperature (TT) is increased, on the other hand, σ1(ω)\sigma_1(\omega) in the low frequency region is progressively suppressed, deviating from the 1/{\omega}^{\frac 12%}-dependence. Interestingly, the suppression of σ1(ω)\sigma_1(\omega) is found to scale with ω/T\omega /T at all temperatures. The origin of the % \omega /T scaling behavior coupled with the non-Fermi liquid behavior is discussed.Comment: 4 pages, 3 figure

    Multiple Front Propagation Into Unstable States

    Full text link
    The dynamics of transient patterns formed by front propagation in extended nonequilibrium systems is considered. Under certain circumstances, the state left behind a front propagating into an unstable homogeneous state can be an unstable periodic pattern. It is found by a numerical solution of a model of the Fr\'eedericksz transition in nematic liquid crystals that the mechanism of decay of such periodic unstable states is the propagation of a second front which replaces the unstable pattern by a another unstable periodic state with larger wavelength. The speed of this second front and the periodicity of the new state are analytically calculated with a generalization of the marginal stability formalism suited to the study of front propagation into periodic unstable states. PACS: 47.20.Ky, 03.40.Kf, 47.54.+rComment: 12 page

    A New Unconventional Antiferromagnet, Yb3_3Pt4_4

    Full text link
    We report the synthesis and basic properties of single crystals of a new binary compound, Yb3_{3}Pt4_{4}. The Yb ions in this compound are fully trivalent, and heat capacity measurements show that the crystal field scheme involves a doublet ground state, well separated from the excited states, which are fully occupied above \sim 150 K. The heat capacity displays a large, weakly first order anomaly at 2.4 K, where a cusp is observed in the magnetic susceptibility signalling the onset of antiferromagnetic order. The entropy associated with this order is the full Rln2 of the doublet ground state, however the magnetic susceptibility in the ordered phase is dominated by a large and temperature independent component below the Neel temperature. The heat capacity in the ordered state originates with ferromagnetic spin waves, giving evidence for the inherently local moment character of the ordered state. The electrical resistivity is unusually large, and becomes quadratic in temperature exactly at the Neel temperature. The absence of analogous Fermi liquid behavior in the heat capacity and the magnetic susceptibility implies that Yb3_{3}Pt4_{4} is a low electron density system, where the Fermi surface is further gapped by the onset of magnetic order.Comment: 8 pages, 9 figure

    High pressure insulator-metal transition in SmB6

    Full text link
    We report the temperature and pressure dependence of the electrical resistivity and Hall constant of single crystal SmB6 for temperatures ranging from 1.2 K to room temperature, and pressures from 1 bar to 80 kbar. Our results indicate that at low pressures SmB6 is an insulator, but undergoes a sudden transition to metallic behavior at a pressure of 50 kbar.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31646/1/0000580.pd

    Role of Disorder on the Quantum Critical Point of a Model for Heavy Fermions

    Full text link
    A zero temperature real space renormalization group (RG) approach is used to investigate the role of disorder near the quantum critical point (QCP) of a Kondo necklace (XY-KN) model. In the pure case this approach yields Jc=0J_{c}=0 implying that any coupling J0J \not = 0 between the local moments and the conduction electrons leads to a non-magnetic phase. We also consider an anisotropic version of the model (XKNX-KN), for which there is a quantum phase transition at a finite value of the ratio between the coupling and the bandwidth, (J/W)(J/W). Disorder is introduced either in the on-site interactions or in the hopping terms. We find that in both cases randomness is irrelevant in the XKNX-KN model, i.e., the disorder induced magnetic-non-magnetic quantum phase transition is controlled by the same exponents of the pure case. Finally, we show the fixed point distributions PJ(J/W)P_{J}(J/W) at the atractors of the disordered, non-magnetic phases.Comment: 5 pages, 3 figure
    corecore