43 research outputs found

    Novel insight into the detailed myocardial motion and deformation of the rodent heart using high-resolution phase contrast cardiovascular magnetic resonance.

    Get PDF
    BACKGROUND: Phase contrast velocimetry cardiovascular magnetic resonance (PC-CMR) is a powerful and versatile tool allowing assessment of in vivo motion of the myocardium. However, PC-CMR is sensitive to motion related artifacts causing errors that are geometrically systematic, rendering regional analysis of myocardial function challenging. The objective of this study was to establish an optimized PC-CMR method able to provide novel insight in the complex regional motion and strain of the rodent myocardium, and provide a proof-of-concept in normal and diseased rat hearts with higher temporal and spatial resolution than previously reported. METHODS: A PC-CMR protocol optimized for assessing the motion and deformation of the myocardium in rats with high spatiotemporal resolution was established, and ten animals with different degree of cardiac dysfunction underwent examination and served as proof-of-concept. Global and regional myocardial velocities and circumferential strain were calculated, and the results were compared to five control animals. Furthermore, the global strain measurements were validated against speckle-tracking echocardiography, and inter- and intrastudy variability of the protocol were evaluated. RESULTS: The presented method allows assessment of regional myocardial function in rats with high level of detail; temporal resolution was 3.2 ms, and analysis was done using 32 circumferential segments. In the dysfunctional hearts, global and regional function were distinctly altered, including reduced global peak values, increased regional heterogeneity and increased index of dyssynchrony. Strain derived from the PC-CMR data was in excellent agreement with echocardiography (r = 0.95, p < 0.001; limits-of-agreement -0.02 ± 3.92%strain), and intra- and interstudy variability were low for both velocity and strain (limits-of-agreement, radial motion: 0.01 ± 0.32 cm/s and -0.06 ± 0.75 cm/s; circumferential strain: -0.16 ± 0.89%strain and -0.71 ± 1.67%strain, for intra- and interstudy, respectively). CONCLUSION: We demonstrate, for the first time, that PC-CMR enables high-resolution evaluation of in vivo circumferential strain in addition to myocardial motion of the rat heart. In combination with the superior geometric robustness of CMR, this ultimately provides a tool for longitudinal studies of regional function in rodents with high level of detail

    Hypokalaemia induces Ca<sup>2+</sup> overload and Ca<sup>2+</sup> waves in ventricular myocytes by reducing Na<sup>+</sup>,K<sup>+</sup>-ATPase α<sub>2</sub> activity

    No full text
    Hypokalaemia is a risk factor for development of ventricular arrhythmias. The aim of this study was to determine the cellular mechanisms leading to triggering of arrhythmias in ventricular myocytes exposed to low K(o). Low K(o), corresponding to moderate hypokalaemia, increased Ca(2+) transient amplitude, sarcoplasmic reticulum (SR) Ca(2+) load, SR Ca(2+) leak and Ca(2+) wave probability in field stimulated rat ventricular myocytes. The mechanisms leading to Ca(2+) overload were examined. Low K(o) reduced Na(+),K(+)-ATPase (NKA) currents, increased cytosolic Na(+) concentration and increased the Na(+) level sensed by the Na(+), Ca(2+) exchanger (NCX). Low K(o) also hyperpolarized the resting membrane potential (RMP) without significant alterations in action potential duration. Experiments in voltage clamped and field stimulated ventricular myocytes, along with mathematical modelling, suggested that low K(o) increases the Ca(2+) transient amplitude by reducing NKA activity despite hyperpolarization of the RMP. Selective inhibition of the NKA α(2) isoform by low dose ouabain abolished the ability of low K(o) to reduce NKA currents, to increase Na(+) levels sensed by NCX and to increase the Ca(2+) transient amplitude. We conclude that low K(o), within the range of moderate hypokalaemia, increases Ca(2+) levels in ventricular myocytes by reducing the pumping rate of the NKA α(2) isoform with subsequent Na(+) accumulation sensed by the NCX. These data highlight reduced NKA α(2)-mediated control of NCX activity as a possible mechanism underlying triggered ventricular arrhythmias in patients with hypokalaemia. KEY POINTS: Hypokalaemia is a risk factor for development of ventricular arrhythmias. . In rat ventricular myocytes, low extracellular K(+) (corresponding to clinical moderate hypokalaemia) increased Ca(2+) wave probability, Ca(2+) transient amplitude, sarcoplasmic reticulum (SR) Ca(2+) load and induced SR Ca(2+) leak. . Low extracellular K(+) reduced Na(+),K(+)-ATPase (NKA) activity and hyperpolarized the resting membrane potential in ventricular myocytes. Both experimental data and modelling indicate that reduced NKA activity and subsequent Na(+) accumulation sensed by the Na(+), Ca(2+) exchanger (NCX) lead to increased Ca(2+) transient amplitude despite concomitant hyperpolarization of the resting membrane potential. . Low extracellular K(+) induced Ca(2+) overload by lowering NKA α(2) activity. Triggered ventricular arrhythmias in patients with hypokalaemia may therefore be attributed to reduced NCX forward mode activity linked to an effect on the NKA α(2) isoform.

    Mutual antagonism between IP3RII and miRNA-133a regulates calcium signals and cardiac hypertrophy

    No full text
    Inositol 1,4,5'-triphosphate receptor II (IP3RII) calcium channel expression is increased in both hypertrophic failing human myocardium and experimentally induced models of the disease. The ectopic calcium released from these receptors induces pro-hypertrophic gene expression and may promote arrhythmias. Here, we show that IP3RII expression was constitutively restrained by the muscle-specific miRNA, miR-133a. During the hypertrophic response to pressure overload or neurohormonal stimuli, miR-133a down-regulation permitted IP3RII levels to increase, instigating pro-hypertrophic calcium signaling and concomitant pathological remodeling. Using a combination of in vivo and in vitro approaches, we demonstrated that IP3-induced calcium release (IICR) initiated the hypertrophy-associated decrease in miR-133a. In this manner, hypertrophic stimuli that engage IICR set a feedforward mechanism in motion whereby IICR decreased miR-133a expression, further augmenting IP3RII levels and therefore pro-hypertrophic calcium release. Consequently, IICR can be considered as both an initiating event and a driving force for pathological remodeling

    Overexpression of integrin α11 induces cardiac fibrosis in mice

    No full text
    AIM: To understand the role of the collagen-binding integrin α11 in vivo, we have used a classical approach of creating a mouse strain overexpressing integrin α11. A transgenic mouse strain overexpressing α11 in muscle tissues was analysed in the current study with special reference to the heart tissue. METHODS: We generated and phenotyped integrin α11 transgenic (TG) mice by echocardiography, magnetic resonance imaging and histology. Wild-type (WT) mice were subjected to aortic banding (AB) and the expression of integrin α11 was measured in flow cytometry-sorted cardiomyocytes and non-myocytes. RESULTS: TG mice developed left ventricular concentric hypertrophy by 6 months, with increased collagen deposition and reactivation of mRNA encoding foetal genes associated with cardiovascular pathological remodelling compared to WT mice. Masson's trichrome staining revealed interstitial fibrosis, confirmed additionally by magnetic resonance imaging and was found to be most prominent in the cardiac septum of TG but not WT mice. TG hearts expressed increased levels of transforming growth factor-β2 and transforming growth factor-β3 and upregulated smooth muscle actin. Macrophage infiltration coincided with increased NF-κB signalling in TG but not WT hearts. Integrin α11 expression was increased in both cardiomyocytes and non-myocyte cells from WT AB hearts compared to sham-operated animals. CONCLUSION: We report for the first time that overexpression of integrin α11 induces cardiac fibrosis and left ventricular hypertrophy. This is a result of changes in intracellular hypertrophic signalling and secretion of soluble factors that increase collagen production in the heart

    Domesticated escapees on the run: the second-generation monitoring programme reports the numbers and proportions of farmed Atlantic salmon in >200 Norwegian rivers annually

    Get PDF
    Norway is the world’s largest producer of farmed Atlantic salmon and is home to ∼400 rivers containing wild salmon populations. Farmed escapees, a reoccurring challenge of all cage-based marine aquaculture, pose a threat to the genetic integrity, productivity, and evolutionary trajectories of wild populations. Escapees have been monitored in Norwegian rivers since 1989, and, a second-generation programme was established in 2014. The new programme includes data from summer angling, autumn angling, broodstock sampling, and snorkelling surveys in >200 rivers, and >25 000 scale samples are analysed annually. In 2014–2017, escapees were observed in two-thirds of rivers surveyed each year, and between 15 and 30 of the rivers had >10% recorded escapees annually. In the period 1989–2017, a reduction in the proportion of escapees in rivers was observed, despite a >6-fold increase in aquaculture production. This reflected improved escape prevention, and possibly changes in production methods that influence post-escape behaviour. On average, populations estimated to experience the greatest genetic introgression from farmed salmon up to 2014 also had the largest proportions of escapees in 2014–2017. Thus, populations already most affected are those at greatest risk of further impacts. These data feed into the annual risk-assessment of Norwegian aquaculture and form the basis for directing mitigation efforts
    corecore