140 research outputs found

    Mutational and secondary structural analysis of the basolateral sorting signal of the polymeric immunoglobulin receptor.

    Get PDF
    The 17-juxtamembrane cytoplasmic residues of the polymeric immunoglobulin receptor contain an autonomous basolateral targeting signal that does not mediate rapid endocytosis (Casanova, J. E., G. Apodaca, and K. E. Mostov. Cell. 66:65-75). Alanine-scanning mutagenesis identifies three residues in this region, His656, Arg657, and Val660, that are most essential for basolateral sorting and two residues, Arg655 and Tyr668, that play a lesser role in this process. Progressive truncations suggested that Ser664 and Ile665 might also play a role in basolateral sorting. However, mutation of these residues to Ala or internal deletions of these residues did not affect basolateral sorting, indicating that these residues are probably not required for basolateral sorting. Two-dimensional NMR spectroscopy of a peptide corresponding to the 17-mer signal indicates that the sequence Arg658-Asn-Val-Asp661 has a propensity to adopt a beta-turn in solution. Residues COOH-terminal to the beta-turn (Arg662 to Arg669) seem to take up a nascent helix structure in solution. Substitution of Val660 with Ala destabilizes the turn, while mutation of Arg657 to Ala does not appear to affect the turn structure. Neither mutation detectably altered the stability of the nascent helix in the COOH-terminal portion of the peptide

    Sorting Mechanisms Regulating Membrane Protein Traffic in the Apical Transcytotic Pathway of Polarized MDCK Cells

    Get PDF
    The transcytotic pathway followed by the polymeric IgA receptor (pIgR) carrying its bound ligand (dIgA) from the basolateral to the apical surface of polarized MDCK cells has been mapped using morphological tracers. At 20°C dIgA-pIgR internalize to interconnected groups of vacuoles and tubules that comprise the endosomal compartment and in which they codistribute with internalized transferrin receptors (TR) and epidermal growth factor receptors (EGFR). Upon transfer to 37°C the endosome vacuoles develop long tubules that give rise to a distinctive population of 100-nm-diam cup-shaped vesicles containing pIgR. At the same time, the endosome gives rise to multivesicular endosomes (MVB) enriched in EGFR and to 60-nm-diam basolateral vesicles. The cup-shaped vesicles carry the dIgA/pIgR complexes to the apical surface where they exocytose

    A New Function for the LDL Receptor: Transcytosis of LDL across the Blood–Brain Barrier

    Get PDF
    Lipoprotein transport across the blood–brain barrier (BBB) is of critical importance for the delivery of essential lipids to the brain cells. The occurrence of a low density lipoprotein (LDL) receptor on the BBB has recently been demonstrated. To examine further the function of this receptor, we have shown using an in vitro model of the BBB, that in contrast to acetylated LDL, which does not cross the BBB, LDL is specifically transcytosed across the monolayer. The C7 monoclonal antibody, known to interact with the LDL receptor-binding domain, totally blocked the transcytosis of LDL, suggesting that the transcytosis is mediated by the receptor. Furthermore, we have shown that cholesterol-depleted astrocytes upregulate the expression of the LDL receptor at the BBB. Under these conditions, we observed that the LDL transcytosis parallels the increase in the LDL receptor, indicating once more that the LDL is transcytosed by a receptor-mediated mechanism. The nondegradation of the LDL during the transcytosis indicates that the transcytotic pathway in brain capillary endothelial cells is different from the LDL receptor classical pathway. The switch between a recycling receptor to a transcytotic receptor cannot be explained by a modification of the internalization signals of the cytoplasmic domain of the receptor, since we have shown that LDL receptor messengers in growing brain capillary ECs (recycling LDL receptor) or differentiated cells (transcytotic receptor) are 100% identical, but we cannot exclude posttranslational modifications of the cytoplasmic domain, as demonstrated for the polymeric immunoglobulin receptor. Preliminary studies suggest that caveolae are likely to be involved in the potential transport of LDL from the blood to the brain
    corecore