35 research outputs found

    A crucial role for tumor necrosis factor receptor 1 in synovial lining cells and the reticuloendothelial system in mediating experimental arthritis

    Get PDF
    Contains fulltext : 89310.pdf (publisher's version ) (Open Access)INTRODUCTION: Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that mainly affects synovial joints. Biologics directed against tumor-necrosis-factor (TNF)-alpha are efficacious in the treatment of RA. However, the role of TNF receptor-1 (TNFR1) in mediating the TNFalpha effects in RA has not been elucidated and conflicting data exist in experimental arthritis models. The objective is to investigate the role of TNFR1 in the synovial lining cells (SLC) and the reticuloendothelial system (RES) during experimental arthritis. METHODS: Third generation of adenovirus serotype 5 were either injected locally in the knee joint cavity or systemically by intravenous injection into the retro-orbital venous sinus to specifically target SLC and RES, respectively. Transduction of organs was detected by immunohistochemistry of the eGFP transgene. An adenoviral vector containing a short hairpin (sh) RNA directed against TNFR1 (HpTNFR1) was constructed and functionally evaluated in vitro using a nuclear factor-kappaB (NF-kappaB) reporter assay and in vivo in streptococcal cell wall-induced arthritis (SCW) and collagen-induced arthritis (CIA). Adenoviruses were administered before onset of CIA, and the effect of TNFR1 targeting on the clinical development of arthritis, histology, quantitative polymerase chain reaction (qPCR), cytokine analyses and T-cell assays was evaluated. RESULTS: Systemic delivery of Ad5.CMV-eGFP predominantly transduced the RES in liver and spleen. Local delivery transduced the synovium and not the RES in liver, spleen and draining lymph nodes. In vitro, HpTNFR1 reduced the TNFR1 mRNA expression by three-fold resulting in a 70% reduction of TNFalpha-induced NF-kappaB activation. Local treatment with HpTNFR1 markedly reduced mRNA and protein levels of interleukin (IL)-1beta and IL-6 in SLC during SCW arthritis and ameliorated CIA. Systemic targeting of TNFR1 in RES of liver and spleen by systemic delivery of Ad5 virus encoding for a small hairpin RNA against TNFR1 markedly ameliorated CIA and simultaneously reduced the mRNA expression of IL-1beta, IL-6 and Saa1 (75%), in the liver and that of Th1/2/17-specific transcription factors T-bet, GATA-3 and RORgammaT in the spleen. Flow cytometry confirmed that HpTNFR1 reduced the numbers of interferon (IFN)gamma (Th1)-, IL-4 (Th2)- and IL-17 (Th17)-producing cells in spleen. CONCLUSIONS: TNFR1-mediated signaling in both synovial lining cells and the reticuloendothelial system independently played a major pro-inflammatory and immunoregulatory role in the development of experimental arthritis

    Rheumatoid Arthritis Patients With Circulating Extracellular Vesicles Positive for IgM Rheumatoid Factor Have Higher Disease Activity

    Get PDF
    Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that mainly affects synovial joints. Validated laboratory parameters for RA diagnosis are higher blood levels of rheumatoid factor IgM (IgM-RF), anti-citrullinated protein autoantibodies (ACPA), C-reactive protein (CRP) levels and erythrocyte sedimentation rate (ESR). Clinical parameters used are the number of tender (TJC) and swollen joints (SJC) and the global patient visual analog score (VAS). To determine disease remission in patients a disease activity score (DAS28) can be calculated based on SJC, TJC, VAS, and ESR (or alternatively CRP). However, subtle and better predictive changes to follow treatment responses in individual patients cannot be measured by the above mentioned parameters nor by measuring cytokine levels in blood. As extracellular vesicles (EVs) play a role in intercellular communication and carry a multitude of signals we set out to determine their value as a biomarker for disease activity. EVs were isolated from platelet-free plasma of 41 RA patients and 24 healthy controls (HC) by size exclusion chromatography (SEC). We quantified the particle and protein concentration, using NanoSight particle tracking analysis and micro-BCA, respectively, and observed no differences between RA patients and HC. In plasma of 28 out of 41 RA patients IgM-RF was detectable by ELISA, and in 13 out of these 28 seropositive RA patients (RF+RA) IgM-RF was also detected on their isolated pEVs (IgM-RF+). In seronegative RA patients (RF−RA) we did not find any RF present on pEVs. When comparing disease parameters we found no differences between RF+RA and RF−RA patients, except for increased ESR levels in RF+RA patients. However, RF+RA patients with IgM-RF+ pEVs showed significantly higher levels of CRP and ESR and also VAS and DAS28 were significantly increased compared to RA+ patients without IgM-RF+ pEVs. This study shows for the first time the presence of IgM-RF on pEVs in a proportion of RF+RA patients with a higher disease activity

    Arntz, Onno J.

    No full text

    Involvement of IL-6, Apart from Its Role in Immunity, in Mediating a Chronic Response during Experimental Arthritis

    No full text
    Interleukin-6 (IL-6) is highly produced during arthritis but its exact function is still unknown. In this study we examined if IL-6, apart from its role in immunity, was involved in the local inflammatory response in experimental arthritis. IL-6 deficient (IL-6−/−) and wild-type mice were first compared in the antigen-induced arthritis model. IL-6 deficiency resulted in a mild, transient inflammation whereas wild-type mice developed a chronic, destructive synovitis. Wild-type mice immunized with one-tenth of the normal antigen dose still developed chronic arthritis despite low antibody levels, excluding reduced humoral immunity in IL-6−/− mice as a crucial phenomenon. In addition, passive immune-complex-induced arthritis did not differ between wild-type and IL-6−/− mice. Another option is reduced levels of Th1 cells in IL-6−/− mice. However, transfer of antigen-specific wild-type lymph node cells to IL-6−/− mice enhanced acute joint inflammation and increased cartilage damage but still could not sustain chronic inflammation, suggesting involvement of nonimmune elements of IL-6 activity in chronicity. In line with this, nonimmunologically mediated zymosan-induced arthritis developed similarly in the first week, but only wild-type mice developed chronic synovitis. These results indicate an important role for IL-6 in propagation of joint inflammation, potentially independent of its role in immunity

    Polyethylene glycol precipitation is an efficient method to obtain extracellular vesicle-depleted fetal bovine serum.

    No full text
    Mesenchymal stromal/stem cell derived-extracellular vesicles (MSC-EVs) have gained interest as drug delivery nanoparticles, having immunoregulatory and potentiating tissue repair property. To maintain growth of MSCs and obtain pure MSC-derived EVs, the culture media should contain fetal bovine serum (FBS) devoid of EVs, as the presence of FBS EVs confounds the properties of MSC-EVs. Therefore, we tested three methods: 18h ultracentrifugation (UC) and ultrafiltration (UF), which are common FBS EV depletion methods in current MSC-EV research, and polyethylene glycol (PEG) precipitation to obtain three EV depleted FBS (EVdFBS) batches, and compared them to FBS and commercial (Com) EVdFBS on human adipose stem cell (hADSC) growth, differentiation, enrichment of EVs in hADSC supernatant and their biological function on collagen metabolism. Our comparative study showed UC and UF vary in terms of depletion efficiency and do not completely deplete EVs and affects the growth-promoting quality of FBS. Specifically, FBS EV depletion was comparable between PEG (95.6%) and UF (96.6%) but less by UC (82%), as compared to FBS. FBS protein loss was markedly different among PEG (47%), UF (87%), and UC (51%), implying the ratio of EV depletion over protein loss was PEG (2.03), UF (1.11), and UC (1.61). A significant decrease of TGFβ/Smad signaling, involving in MSC growth and physiology, was observed by UF. After 96 hours of exposure to 5% FBS or 5% four different EVdFBS cell growth media, the osteogenesis ability of hADSCs was not impaired but slightly lower mRNA expression level of Col2a observed in EVdFBS media during chondrogenesis. In consistent with low confluency of hADSCs observed by optical microscope, cell proliferation in response to 5% UF EVdFBS media was inhibited significantly. Importantly, more and purer ADSCs EVs were obtained from ADSCs cultured in 5% PEG EVdFBS media, and they retained bioactive as they upregulated the expression of Col1a1, TIMP1 of human knee synovial fibroblast. Taken together, this study showed that PEG precipitation is the most efficient method to obtain EV depleted FBS for growth of MSCs, and to obtain MSC EVs with minimal FBS EV contamination

    Influence of mesenchymal stem cell-derived extracellular vesicles in vitro and their role in ageing

    No full text
    INTRODUCTION: This study assessed whether mesenchymal stem cell (MSC)-derived extracellular vesicles influenced ageing and pluripotency markers in cell cultures where they are added. METHODS: MSC-derived extracellular vesicles from old and young rat bone marrows were isolated by ultracentrifugation and were characterised by western blotting, nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). They were added to young and old MSC cultures. Real-time quantitative reverse transcription polymerase chain reactions and western blot analysis were performed to check the markers of ageing (vinculin and lamin A), pluripotency markers (Nanog and Oct4) and components of the mTOR signalling pathway (Rictor, Raptor, AKT and mTOR) in these cell populations. Subsequently, microRNA (miR)-188-3p expression was transiently inhibited in young MSCs to demonstrate the influence of mTOR2 on MSC ageing. RESULTS: Incubation with young MSC-derived extracellular vesicles decreased the levels of ageing markers and components of the mTOR pathway and increased the pluripotency markers from old MSC populations. By contrast, incubation of young MSCs with old MSC-derived extracellular vesicles generated the reverse effects. Inhibition of miR-188-3p expression in young MSCs produced extracellular vesicles that when incubated with old MSCs produced an increase in the levels of Rictor, as well as a decrease of phosphor-AKT, as indicated by a significant decrease in beta-galactosidase staining. CONCLUSIONS: MSC-derived extracellular vesicles affected the behaviour of MSC cultures, based on their composition, which could be modified in vitro. These experiments represented the basis for the development of new therapies against ageing-associated diseases using MSC-derived extracellular vesicles

    Bovine Milk-Derived Extracellular Vesicles Inhibit Catabolic and Inflammatory Processes in Cartilage from Osteoarthritis Patients

    No full text
    Scope: Data from the Osteoarthritis Initiative shows that females who drink milk regularly have less joint cartilage loss and OA progression, but the biologic mechanism is unclear. Bovine milk is a rich source of extracellular vesicles (EVs), which are small phospholipid bilayer bound structures that facilitate intercellular communication. In this study, the authors aim to evaluate whether these EVs may have the capacity to protect cartilage from osteoarthritis patients, ex vivo, by directly effecting chondrocytes. Methods and Results: Human cartilage explants are exposed to cow's milk-derived EVs (CMEVs), which results in reduced sulfated glycosaminoglycan release and inhibition of metalloproteinase-1 expression. Incubation of articular chondrocytes with CMEVs also effectively reduces expression of cartilage destructive enzymes (ADAMTS5, MMPs), which play key roles in the disease progression. In part, these findings are attributed to the presence of TGFβ on these vesicles, and in addition, a possible role is reserved for miR-148a, which is functionally transferred by CMEVs. Conclusion: These findings highlight the therapeutic potential of local CMEV delivery in osteoarthritic joints, where inflammatory and catabolic mediators are responsible for joint pathology. CMEVs are carriers of both TGFβ and miR-148a, two essential regulators for maintaining chondrocyte homeostasis and protection against cartilage destruction
    corecore