1,095 research outputs found

    MLD Relations of Pisot Substitution Tilings

    Full text link
    We consider 1-dimensional, unimodular Pisot substitution tilings with three intervals, and discuss conditions under which pairs of such tilings are locally isomorhphic (LI), or mutually locally derivable (MDL). For this purpose, we regard the substitutions as homomorphisms of the underlying free group with three generators. Then, if two substitutions are conjugated by an inner automorphism of the free group, the two tilings are LI, and a conjugating outer automorphism between two substitutions can often be used to prove that the two tilings are MLD. We present several examples illustrating the different phenomena that can occur in this context. In particular, we show how two substitution tilings can be MLD even if their substitution matrices are not equal, but only conjugate in GL(n,Z)GL(n,\mathbb{Z}). We also illustrate how the (in our case fractal) windows of MLD tilings can be reconstructed from each other, and discuss how the conjugating group automorphism affects the substitution generating the window boundaries.Comment: Presented at Aperiodic'09 (Liverpool

    Two-dimensional iterated morphisms and discrete planes

    Get PDF

    Geometrical Models for Substitutions

    Get PDF
    International audienceWe consider a substitution associated with the Arnoux-Yoccoz interval exchange transformation (IET) related to the tribonacci substitution. We construct the so-called stepped lines associated with the fixed points of the substitution in the abelianization (symbolic) space. We analyze various projections of the stepped line, recovering the Rauzy fractal, a Peano curve related to work in [Arnoux 88], another Peano curve related to the work of [McMullen 09] and [Lowenstein et al. 07], and also the interval exchange transformation itself

    Symbolic approach and induction in the Heisenberg group

    Full text link
    We associate a homomorphism in the Heisenberg group to each hyperbolic unimodular automorphism of the free group on two generators. We show that the first return-time of some flows in "good" sections, are conjugate to niltranslations, which have the property of being self-induced.Comment: 18 page

    Geometric representation of interval exchange maps over algebraic number fields

    Full text link
    We consider the restriction of interval exchange transformations to algebraic number fields, which leads to maps on lattices. We characterize renormalizability arithmetically, and study its relationships with a geometrical quantity that we call the drift vector. We exhibit some examples of renormalizable interval exchange maps with zero and non-zero drift vector, and carry out some investigations of their properties. In particular, we look for evidence of the finite decomposition property: each lattice is the union of finitely many orbits.Comment: 34 pages, 8 postscript figure

    Entéro-toxémie infectieuse du Mouton et pénicillinothérapie

    Get PDF
    Rossi Paul, Arnoux C. Entérotoxémie infectieuse du Mouton et pénicillothérapie. In: Bulletin de l'Académie Vétérinaire de France tome 103 n°4, 1950. pp. 205-206

    Critical connectedness of thin arithmetical discrete planes

    Full text link
    An arithmetical discrete plane is said to have critical connecting thickness if its thickness is equal to the infimum of the set of values that preserve its 22-connectedness. This infimum thickness can be computed thanks to the fully subtractive algorithm. This multidimensional continued fraction algorithm consists, in its linear form, in subtracting the smallest entry to the other ones. We provide a characterization of the discrete planes with critical thickness that have zero intercept and that are 22-connected. Our tools rely on the notion of dual substitution which is a geometric version of the usual notion of substitution acting on words. We associate with the fully subtractive algorithm a set of substitutions whose incidence matrix is provided by the matrices of the algorithm, and prove that their geometric counterparts generate arithmetic discrete planes.Comment: 18 pages, v2 includes several corrections and is a long version of the DGCI extended abstrac

    Cross sections for geodesic flows and \alpha-continued fractions

    Full text link
    We adjust Arnoux's coding, in terms of regular continued fractions, of the geodesic flow on the modular surface to give a cross section on which the return map is a double cover of the natural extension for the \alpha-continued fractions, for each α\alpha in (0,1]. The argument is sufficiently robust to apply to the Rosen continued fractions and their recently introduced \alpha-variants.Comment: 20 pages, 2 figure

    Describing the set of words generated by interval exchange transformation

    Full text link
    Let WW be an infinite word over finite alphabet AA. We get combinatorial criteria of existence of interval exchange transformations that generate the word W.Comment: 17 pages, this paper was submitted at scientific council of MSU, date: September 21, 200

    An algorithm to identify automorphisms which arise from self-induced interval exchange transformations

    Full text link
    We give an algorithm to determine if the dynamical system generated by a positive automorphism of the free group can also be generated by a self-induced interval exchange transformation. The algorithm effectively yields the interval exchange transformation in case of success.Comment: 26 pages, 8 figures. v2: the article has been reorganized to make for a more linear read. A few paragraphs have been added for clarit
    • …
    corecore