1,095 research outputs found
MLD Relations of Pisot Substitution Tilings
We consider 1-dimensional, unimodular Pisot substitution tilings with three
intervals, and discuss conditions under which pairs of such tilings are locally
isomorhphic (LI), or mutually locally derivable (MDL). For this purpose, we
regard the substitutions as homomorphisms of the underlying free group with
three generators. Then, if two substitutions are conjugated by an inner
automorphism of the free group, the two tilings are LI, and a conjugating outer
automorphism between two substitutions can often be used to prove that the two
tilings are MLD. We present several examples illustrating the different
phenomena that can occur in this context. In particular, we show how two
substitution tilings can be MLD even if their substitution matrices are not
equal, but only conjugate in . We also illustrate how the (in
our case fractal) windows of MLD tilings can be reconstructed from each other,
and discuss how the conjugating group automorphism affects the substitution
generating the window boundaries.Comment: Presented at Aperiodic'09 (Liverpool
Geometrical Models for Substitutions
International audienceWe consider a substitution associated with the Arnoux-Yoccoz interval exchange transformation (IET) related to the tribonacci substitution. We construct the so-called stepped lines associated with the fixed points of the substitution in the abelianization (symbolic) space. We analyze various projections of the stepped line, recovering the Rauzy fractal, a Peano curve related to work in [Arnoux 88], another Peano curve related to the work of [McMullen 09] and [Lowenstein et al. 07], and also the interval exchange transformation itself
Symbolic approach and induction in the Heisenberg group
We associate a homomorphism in the Heisenberg group to each hyperbolic
unimodular automorphism of the free group on two generators. We show that the
first return-time of some flows in "good" sections, are conjugate to
niltranslations, which have the property of being self-induced.Comment: 18 page
Geometric representation of interval exchange maps over algebraic number fields
We consider the restriction of interval exchange transformations to algebraic
number fields, which leads to maps on lattices. We characterize
renormalizability arithmetically, and study its relationships with a
geometrical quantity that we call the drift vector. We exhibit some examples of
renormalizable interval exchange maps with zero and non-zero drift vector, and
carry out some investigations of their properties. In particular, we look for
evidence of the finite decomposition property: each lattice is the union of
finitely many orbits.Comment: 34 pages, 8 postscript figure
Entéro-toxémie infectieuse du Mouton et pénicillinothérapie
Rossi Paul, Arnoux C. Entérotoxémie infectieuse du Mouton et pénicillothérapie. In: Bulletin de l'Académie Vétérinaire de France tome 103 n°4, 1950. pp. 205-206
Critical connectedness of thin arithmetical discrete planes
An arithmetical discrete plane is said to have critical connecting thickness
if its thickness is equal to the infimum of the set of values that preserve its
-connectedness. This infimum thickness can be computed thanks to the fully
subtractive algorithm. This multidimensional continued fraction algorithm
consists, in its linear form, in subtracting the smallest entry to the other
ones. We provide a characterization of the discrete planes with critical
thickness that have zero intercept and that are -connected. Our tools rely
on the notion of dual substitution which is a geometric version of the usual
notion of substitution acting on words. We associate with the fully subtractive
algorithm a set of substitutions whose incidence matrix is provided by the
matrices of the algorithm, and prove that their geometric counterparts generate
arithmetic discrete planes.Comment: 18 pages, v2 includes several corrections and is a long version of
the DGCI extended abstrac
Cross sections for geodesic flows and \alpha-continued fractions
We adjust Arnoux's coding, in terms of regular continued fractions, of the
geodesic flow on the modular surface to give a cross section on which the
return map is a double cover of the natural extension for the \alpha-continued
fractions, for each in (0,1]. The argument is sufficiently robust to
apply to the Rosen continued fractions and their recently introduced
\alpha-variants.Comment: 20 pages, 2 figure
Describing the set of words generated by interval exchange transformation
Let be an infinite word over finite alphabet . We get combinatorial
criteria of existence of interval exchange transformations that generate the
word W.Comment: 17 pages, this paper was submitted at scientific council of MSU,
date: September 21, 200
An algorithm to identify automorphisms which arise from self-induced interval exchange transformations
We give an algorithm to determine if the dynamical system generated by a
positive automorphism of the free group can also be generated by a self-induced
interval exchange transformation. The algorithm effectively yields the interval
exchange transformation in case of success.Comment: 26 pages, 8 figures. v2: the article has been reorganized to make for
a more linear read. A few paragraphs have been added for clarit
- …