86 research outputs found

    Immunological Characterization and Neutralizing Ability of Monoclonal Antibodies Directed Against Botulinum Neurotoxin Type H.

    Get PDF
    BackgroundOnly Clostridium botulinum strain IBCA10-7060 produces the recently described novel botulinum neurotoxin type H (BoNT/H). BoNT/H (N-terminal two-thirds most homologous to BoNT/F and C-terminal one-third most homologous to BoNT/A) requires antitoxin to toxin ratios ≥1190:1 for neutralization by existing antitoxins. Hence, more potent and safer antitoxins against BoNT/H are needed.MethodsWe therefore evaluated our existing monoclonal antibodies (mAbs) to BoNT/A and BoNT/F for BoNT/H binding, created yeast-displayed mutants to select for higher-affinity-binding mAbs by using flow cytometry, and evaluated the mAbs' ability to neutralize BoNT/H in the standard mouse bioassay.ResultsAnti-BoNT/A HCC-binding mAbs RAZ1 and CR2 bound BoNT/H with high affinity. However, only 1 of 6 BoNT/F mAbs (4E17.2A) bound BoNT/H but with an affinity >800-fold lower (equilibrium dissociation binding constant [KD] = 7.56 × 10(-8)M) than its BoNT/F affinity (KD= 9.1 × 10(-11)M), indicating that the N-terminal two-thirds of BoNT/H is immunologically unique. The affinity of 4E17.2A for BoNT/H was increased >500-fold to KD= 1.48 × 10(-10)M (mAb 4E17.2D). A combination of mAbs RAZ1, CR2, and 4E17.2D completely protected mice challenged with 280 mouse median lethal doses of BoNT/H at a mAb dose as low as 5 µg of total antibody.ConclusionsThis 3-mAb combination potently neutralized BoNT/H and represents a potential human antitoxin that could be developed for the prevention and treatment of type H botulism

    Universal and specific quantitative detection of botulinum neurotoxin genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Clostridium botulinum</it>, an obligate anaerobic spore-forming bacterium, produces seven antigenic variants of botulinum toxin that are distinguished serologically and termed "serotypes". Botulinum toxin blocks the release of acetylcholine at neuromuscular junctions resulting in flaccid paralysis. The potential lethality of the disease warrants a fast and accurate means of diagnosing suspected instances of food contamination or human intoxication. Currently, the Food and Drug Administration (FDA)-accepted assay to detect and type botulinum neurotoxins (BoNTs) is the mouse protection bioassay. While specific and sensitive, this assay requires the use of laboratory animals, may take up to four days to achieve a diagnosis, and is unsuitable for high-throughput analysis. We report here a two-step PCR assay that identifies all toxin types, that achieves the specificity of the mouse bioassay while surpassing it in equivalent sensitivity, that has capability for high-throughput analysis, and that provides quantitative results within hours. The first step of our assay consists of a conventional PCR that detects the presence of <it>C. botulinum </it>regardless of the neurotoxin type. The second step uses quantitative PCR (qPCR) technology to determine the specific serotype of the neurotoxin.</p> <p>Results</p> <p>We assayed purified <it>C. botulinum </it>DNA and crude toxin preparations, as well as food and stool from healthy individuals spiked with purified BoNT DNA, and one stool sample from a case of infant botulism for the presence of the NTNH gene, which is part of the BoNT gene cluster, and for the presence of serotype-specific BoNT genes. The PCR surpassed the mouse bioassay both in specificity and sensitivity, detecting positive signals in BoNT preparations containing well below the 1 LD<sub>50 </sub>required for detection via the mouse bioassay. These results were type-specific and we were reliably able to quantify as few as 10 genomic copies.</p> <p>Conclusions</p> <p>While other studies have reported conventional or quantitative PCR-based assays for the detection of <it>C. botulinum </it>genes, our procedure's high-throughput capability and its portability allows most laboratories to quickly assess the possible presence of BoNTs either in food processing samples or in suspected cases of botulism. Thus, this assay provides rapid and specific detection of BoNT and toxin complex genes and would enable the targeting of appropriate therapeutics to infected individuals in a timely manner.</p

    HCMV pUL135 remodels the actin cytoskeleton to impair immune recognition of infected cells

    Get PDF
    Immune evasion genes help human cytomegalovirus (HCMV) establish lifelong persistence. Without immune pressure, laboratory-adapted HCMV strains have undergone genetic alterations. Among these, the deletion of the UL/b’ domain is associated with loss of virulence. In a screen of UL/b’, we identified pUL135 as a protein responsible for the characteristic cytopathic effect of clinical HCMV strains that also protected from natural killer (NK) and T cell attack. pUL135 interacted directly with abl interactor 1 (ABI1) and ABI2 to recruit the WAVE2 regulatory complex to the plasma membrane, remodel the actin cytoskeleton and dramatically reduce the efficiency of immune synapse (IS) formation. An intimate association between F-actin filaments in target cells and the IS was dispelled by pUL135 expression. Thus, F-actin in target cells plays a critical role in synaptogenesis, and this can be exploited by pathogens to protect against cytotoxic immune effector cells. An independent interaction between pUL135 and talin disrupted cell contacts with the extracellular matrix

    Attomolar Detection of Botulinum Toxin Type A in Complex Biological Matrices

    Get PDF
    BACKGROUND: A highly sensitive, rapid and cost efficient method that can detect active botulinum neurotoxin (BoNT) in complex biological samples such as foods or serum is desired in order to 1) counter the potential bioterrorist threat 2) enhance food safety 3) enable future pharmacokinetic studies in medical applications that utilize BoNTs. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a botulinum neurotoxin serotype A assay with a large immuno-sorbent surface area (BoNT/A ALISSA) that captures a low number of toxin molecules and measures their intrinsic metalloprotease activity with a fluorogenic substrate. In direct comparison with the "gold standard" mouse bioassay, the ALISSA is four to five orders of magnitudes more sensitive and considerably faster. Our method reaches attomolar sensitivities in serum, milk, carrot juice, and in the diluent fluid used in the mouse assay. ALISSA has high specificity for the targeted type A toxin when tested against alternative proteases including other BoNT serotypes and trypsin, and it detects the holotoxin as well as the multi-protein complex form of BoNT/A. The assay was optimized for temperature, substrate concentration, size and volume proportions of the immuno-sorbent matrix, enrichment and reaction times. Finally, a kinetic model is presented that is consistent with the observed improvement in sensitivity. CONCLUSIONS/SIGNIFICANCE: The sensitivity, specificity, speed and simplicity of the BoNT ALISSA should make this method attractive for diagnostic, biodefense and pharmacological applications

    Durable response with single-agent acalabrutinib in patients with relapsed or refractory mantle cell lymphoma

    Get PDF
    Bruton tyrosine kinase (BTK) inhibitors have greatly improved the spectrum of treatment options in mantle cell lymphoma (MCL) [1–4]. Acalabrutinib is a highly selective, orally administered, and potent BTK inhibitor with limited off-target activity [5]. Acalabrutinib was approved in 2017 by the US Food and Drug Administration for the treatment of relapsed/refractory MCL based on clinical data from the open-label, multicenter, phase 2 ACE-LY-004 study of acalabrutinib 100 mg twice daily [1]. Here, we present updated results from the ACE-LY-004 study after a median 26-month follow-up. Eligibility criteria and study design were published previously (Supplementary methods) [1]. Analysis of minimal residual disease (MRD) was conducted after complete response (CR) or partial response (PR) was achieved using the quantitative ClonoSEQ next-generation sequencing (5 × 10−6 ) assay (Adpative Biotechnologies, Seattle, WA, USA) in consenting patients with available paired archival tumor and whole blood samples. Data are updated as of February 12, 2018

    Proteomics Mapping of Cord Blood Identifies Haptoglobin “Switch-On” Pattern as Biomarker of Early-Onset Neonatal Sepsis in Preterm Newborns

    Get PDF
    Intra-amniotic infection and/or inflammation (IAI) are important causes of preterm birth and early-onset neonatal sepsis (EONS). A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns.We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A proteomics discovery phase employing two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry identified 19 differentially-expressed proteins in cord blood of newborns with culture-confirmed EONS (n = 3) versus GA-matched controls (n = 3). Ontological classifications of the proteins included transfer/carrier, immunity/defense, protease/extracellular matrix. The 1(st)-level external validation conducted in the remaining 174 samples confirmed elevated haptoglobin and haptoglobin-related protein immunoreactivity (Hp&HpRP) in newborns with EONS (presumed and culture-confirmed) independent of GA at birth and birthweight (P<0.001). Western blot concurred in determining that EONS babies had conspicuous Hp&HpRP bands in cord blood ("switch-on pattern") as opposed to non-EONS newborns who had near-absent "switch-off pattern" (P<0.001). Fetal Hp phenotype independently impacted Hp&HpRP. A bayesian latent-class analysis (LCA) was further used for unbiased classification of all 180 cases based on probability of "antenatal IAI exposure" as latent variable. This was then subjected to 2(nd)-level validation against indicators of adverse short-term neonatal outcome. The optimal LCA algorithm combined Hp&HpRP switch pattern (most input), interleukin-6 and neonatal hematological indices yielding two non-overlapping newborn clusters with low (≤20%) versus high (≥70%) probability of IAI exposure. This approach reclassified ∼30% of clinical EONS diagnoses lowering the number needed to harm and increasing the odds ratios for several adverse outcomes including intra-ventricular hemorrhage.Antenatal exposure to IAI results in precocious switch-on of Hp&HpRP expression. As EONS biomarker, cord blood Hp&HpRP has potential to improve the selection of newborns for prompt and targeted treatment at birth

    Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis

    Get PDF
    BACKGROUND Two phase 3 trials (UNCOVER-2 and UNCOVER-3) showed that at 12 weeks of treatment, ixekizumab, a monoclonal antibody against interleukin-17A, was superior to placebo and etanercept in the treatment of moderate-to-severe psoriasis. We report the 60-week data from the UNCOVER-2 and UNCOVER-3 trials, as well as 12-week and 60-week data from a third phase 3 trial, UNCOVER-1. METHODS We randomly assigned 1296 patients in the UNCOVER-1 trial, 1224 patients in the UNCOVER-2 trial, and 1346 patients in the UNCOVER-3 trial to receive subcutaneous injections of placebo (placebo group), 80 mg of ixekizumab every 2 weeks after a starting dose of 160 mg (2-wk dosing group), or 80 mg of ixekizumab every 4 weeks after a starting dose of 160 mg (4-wk dosing group). Additional cohorts in the UNCOVER-2 and UNCOVER-3 trials were randomly assigned to receive 50 mg of etanercept twice weekly. At week 12 in the UNCOVER-3 trial, the patients entered a long-term extension period during which they received 80 mg of ixekizumab every 4 weeks through week 60; at week 12 in the UNCOVER-1 and UNCOVER-2 trials, the patients who had a response to ixekizumab (defined as a static Physicians Global Assessment [sPGA] score of 0 [clear] or 1 [minimal psoriasis]) were randomly reassigned to receive placebo, 80 mg of ixekizumab every 4 weeks, or 80 mg of ixekizumab every 12 weeks through week 60. Coprimary end points were the percentage of patients who had a score on the sPGA of 0 or 1 and a 75% or greater reduction from baseline in Psoriasis Area and Severity Index (PASI 75) at week 12. RESULTS In the UNCOVER-1 trial, at week 12, the patients had better responses to ixekizumab than to placebo; in the 2-wk dosing group, 81.8% had an sPGA score of 0 or 1 and 89.1% had a PASI 75 response; in the 4-wk dosing group, the respective rates were 76.4% and 82.6%; and in the placebo group, the rates were 3.2% and 3.9% (P<0.001 for all comparisons of ixekizumab with placebo). In the UNCOVER-1 and UNCOVER-2 trials, among the patients who were randomly reassigned at week 12 to receive 80 mg of ixekizumab every 4 weeks, 80 mg of ixekizumab every 12 weeks, or placebo, an sPGA score of 0 or 1 was maintained by 73.8%, 39.0%, and 7.0% of the patients, respectively. Patients in the UNCOVER-3 trial received continuous treatment of ixekizumab from weeks 0 through 60, and at week 60, at least 73% had an sPGA score of 0 or 1 and at least 80% had a PASI 75 response. Adverse events reported during ixekizumab use included neutropenia, candidal infections, and inflammatory bowel disease. CONCLUSIONS In three phase 3 trials involving patients with psoriasis, ixekizumab was effective through 60 weeks of treatment. As with any treatment, the benefits need to be weighed against the risks of adverse events. The efficacy and safety of ixekizumab beyond 60 weeks of treatment are not yet known

    Recent Engagements with Adam Smith and the Scottish Enlightenment

    Full text link

    Clinical mimics of infant botulism

    No full text
    Since 1992, Human Botulism Immune Globulin has been provided by the California Department of Health Services to infants with probable infant botulism, the intestinal toxemia form of human botulism. Human Botulism Immune Globulin became available in California in 1992\u961997 within a randomized, controlled, double-blinded, pivotal clinical trial and subsequently became available nationwide in 1998\u962003 in an open-label study until its licensure in October 2003 as BabyBIG. Thereafter, Human Botulism Immune Globulin remained available nationwide as an approved orphan-drug product. To achieve prompt neutralization of circulating botulinum toxin, the decision to treat with Human Botulism Immune Globulin has been based on clinical criteria that include a consistent history and physical findings of bulbar palsies, hypotonia, and weakness. After licensure, the charts of patients who did not have laboratory-confirmed infant botulism were reviewed to identify their actual diagnoses. The 5% of 681 patients treated with Human Botulism Immune Globulin who did not have infant botulism fell into 5 categories: spinal muscular atrophy, metabolic disorders, other infectious diseases, miscellaneous, and probable infant botulism lacking laboratory confirmation

    Creation and development of the public service orphan drug human botulism immune globulin

    No full text
    The public service orphan drug Human Botulism Immune Globulin for the treatment of infant botulism would not have come into existence without the federal Orphan Drug Act and the funding mechanism that it provided to conduct pivotal clinical trials. Nonetheless, creating, developing, and achieving licensure of Human Botulism Immune Globulin took approximately 15 years and approximately 10.6million(2005dollars)toaccomplish.UseofHumanBotulismImmuneGlobulintotreatpatientswithinfantbotulismhasresultedthusfarinmorethan30yearsofavoidedhospitalstayandmorethan10.6 million (2005 dollars) to accomplish. Use of Human Botulism Immune Globulin to treat patients with infant botulism has resulted thus far in more than 30 years of avoided hospital stay and more than 50 million (2005 dollars) of avoided hospital costs. To provide a possible paradigm for others, the circumstances that enabled a state public health department to create, test, license, and distribute an orphan drug are described here
    corecore