58 research outputs found

    Estimating rodent population abundance using early climatic predictors

    Get PDF
    Climate might directly or indirectly affect the population dynamics of several rodent species including Apodemus flavicollis, a very common forest small mammal and an important reservoir for several emerging zoonotic pathogens. We thus investigated how climatic data alone might be useful to predict rodent population dynamics. We used rodent data gathered through a long-term monitoring effort carried out for 17 years (2000–2017) using a capture-mark-recapture method in northern Italy. Temperature and precipitation data were obtained from a weather station close to the study area. Linear models were implemented to assess how mice density was associated with weather conditions considering various time lags. We found that warmer summers 2 years before sampling were positively related to A. flavicollis annual average population densities. Conversely, precipitation occurring the autumn 1 year before sampling negatively influenced mice abundance. To the best of our knowledge, this is one of the first attempts at investigating how rodent abundance is associated with climatic conditions in the central European region of the Alps. Our results highlight important correlations, which eventually might be used for estimating risk of transmission of rodent-borne zoonotic pathogen

    Diapause characterization in the invasive alien mosquito species Aedes koreicus: a laboratory experiment

    Get PDF
    Aedes koreicus is an invasive alien mosquito species native to Asia now introduced in several European countries, including northern Italy. In this temperate region, mosquito populations survive cold winter temperatures thanks to diapausing eggs or adults, depending on the species. In its native area, Ae. koreicus was reported to overwinter in the egg stage, but to the best of our knowledge, it is not confirmed whether overwintering eggs are actually diapausing or only in a quiescence stage, i.e., they might hatch as soon as external conditions are favorable. Based on previous laboratory studies, we established a diapausing Ae. koreicus colony, maintained at 21 °C with a photoperiod of 12L:12D. Females were allowed to lay eggs, which were consequently placed in water at different time intervals after oviposition, from 30 days to 5 months. We found that diapausing eggs younger than 3 months have a poor hatching rate, while after about 100 days we observed that almost all eggs hatched. Our findings highlight that water immersion alone did not lead to the hatching of eggs, as age was found to be a significantly important factor. We thus confirm effective diapause, occurring at the egg stage, for Ae. koreicus in a recently invaded area. Moreover, our quantification of diapause duration and hatching success might help in better designing future experiments and improving modeling effort

    Influence of temperature on the life-cycle dynamics of Aedes albopictus population established at temperate latitudes: a laboratory experiment

    Get PDF
    6openInternationalThe mosquito species Aedes albopictus has successfully colonized many areas at temperate latitudes, representing a major public health concern. As mosquito bionomics is critically affected by temperature, we experimentally investigated the influence of different constant rearing temperatures (10, 15, 25, and 30 °C) on the survival rates, fecundity, and developmental times of different life stages of Ae. albopictus using a laboratory colony established from specimens collected in northern Italy. We compared our results with previously published data obtained with subtropical populations. We found that temperate Ae. albopictus immature stages are better adapted to colder temperatures: temperate larvae were able to develop even at 10 °C and at 15 °C, larval survivorship was comparable to the one observed at warmer conditions. Nonetheless, at these lower temperatures, we did not observe any blood-feeding activity. Adult longevity and fecundity were substantially greater at 25 °C with respect to the other tested temperatures. Our findings highlight the ability of Ae. albopictus to quickly adapt to colder environments and provide new important insights on the bionomics of this species at temperate latitudesopenMarini, G.; Manica, M.; Arnoldi, D.; Inama, E.; Rosa', R.; Rizzoli, A.Marini, G.; Manica, M.; Arnoldi, D.; Inama, E.; Rosa', R.; Rizzoli, A

    Mapping of Aedes albopictus abundance at a local scale in Italy

    Get PDF
    Given the growing risk of arbovirus outbreaks in Europe, there is a clear need to better describe the distribution of invasive mosquito species such as Aedes albopictus. Current challenges consist in simulating Ae. albopictus abundance, rather than its presence, and mapping its simulated abundance at a local scale to better assess the transmission risk of mosquito-borne pathogens and optimize mosquito control strategy. During 2014–2015, we sampled adult mosquitoes using 72 BG-Sentinel traps per year in the provinces of Belluno and Trento, Italy. We found that the sum of Ae. albopictus females collected during eight trap nights from June to September was positively related to the mean temperature of the warmest quarter and the percentage of artificial areas in a 250 m buffer around the sampling locations. Maps of Ae. albopictus abundance simulated from the most parsimonious model in the study area showed the largest populations in highly artificial areas with the highest summer temperatures, but with a high uncertainty due to the variability of the trapping collections. Vector abundance maps at a local scale should be promoted to support stakeholders and policy-makers in optimizing vector surveillance and control

    Bogoliubov modes of a dipolar condensate in a cylindrical trap

    Full text link
    The calculation of properties of Bose-Einstein condensates with dipolar interactions has proven a computationally intensive problem due to the long range nature of the interactions, limiting the scope of applications. In particular, the lowest lying Bogoliubov excitations in three dimensional harmonic trap with cylindrical symmetry were so far computed in an indirect way, by Fourier analysis of time dependent perturbations, or by approximate variational methods. We have developed a very fast and accurate numerical algorithm based on the Hankel transform for calculating properties of dipolar Bose-Einstein condensates in cylindrically symmetric traps. As an application, we are able to compute many excitation modes by directly solving the Bogoliubov-De Gennes equations. We explore the behavior of the excited modes in different trap geometries. We use these results to calculate the quantum depletion of the condensate by a combination of a computation of the exact modes and the use of a local density approximation

    First report of the blood-feeding pattern in Aedes koreicus, a new invasive species in Europe

    Get PDF
    Aedes koreicus is an invasive mosquito species which has been introduced into several European countries. Compared to other invasive Aedes mosquitoes, little is known of its biology and ecology. To determine Ae. koreicus’ vectorial capacity, it is essential to establish its feeding patterns and level of anthropophagy. We report on the blood‑feeding patterns of Ae. koreicus, examining the blood meal origin of engorged females and evaluating the influence of different biotic and abiotic factors on feeding behavior. Mosquitoes were collected in 23 sites in northern Italy by manual aspiration and BG‑sentinel traps; host availability was estimated by survey. The source of blood meals was identified using a nested PCR and by targeting and sequencing the cytochrome c oxidase subunit I gene. In total, 352 Ae. koreicus engorged females were collected between 2013 and 2020 and host blood meals were determined from 299 blood‑fed mosquitoes (84.9%). Eleven host species were identified, with the highest prevalences being observed among roe deer (Capreolus capreolus) (N = 189, 63.2%) and humans (N = 46, 15.4%). Blood meals were mostly taken from roe deer in forested sites and from humans in urban areas, suggesting that this species can feed on different hosts according to local abundance. Two blood meals were identified from avian hosts and one from lizard. Ae. koreicus’ mammalophilic feeding pattern suggests that it may be a potential vector of pathogens establishing transmission cycles among mammals, whereas its role as a bridge vector between mammals and birds could be negligibl

    dynamAedes: a unified modelling framework for invasive Aedes mosquitoes

    Get PDF
    Mosquito species belonging to the genus Aedes have attracted the interest of scientists and public health officers because of their capacity to transmit viruses that affect humans. Some of these species were brought outside their native range by means of trade and tourism and then colonised new regions thanks to a unique combination of eco-physiological traits. Considering mosquito physiological and behavioural traits to understand and predict their population dynamics is thus a crucial step in developing strategies to mitigate the local densities of invasive Aedes populations. Here, we synthesised the life cycle of four invasive Aedes species (Ae. aegypti, Ae. albopictus, Ae. japonicus and Ae. koreicus) in a single multi-scale stochastic modelling framework which we coded in the R package dynamAedes. We designed a stage-based and time-discrete stochastic model driven by temperature, photo-period and inter-specific larval competition that can be applied to three different spatial scales: punctual, local and regional. These spatial scales consider different degrees of spatial complexity and data availability by accounting for both active and passive dispersal of mosquito species as well as for the heterogeneity of the input temperature data. Our overarching aim was to provide a flexible, open-source and user-friendly tool rooted in the most updated knowledge on the species’ biology which could be applied to the management of invasive Aedes populations as well as to more theoretical ecological inquirie

    First evidence of resistance to pyrethroid insecticides in Italian Aedes albopictus populations after 26 years since invasion

    Get PDF
    Aedes albopictus has spread during the last decades all over the world. This has increased significantly the risk of exotic arbovirus transmission (e.g. Chikungunya, Dengue, and Zika) also in temperate areas, as testified by the Chikungunya 2007- and 2017-outbreaks in north-east and central Italy. Insecticides represent a main tool for limiting the circulation of these mosquito-borne viruses. The aim of the present study is to start filling the current gap of knowledge on pyrethroid insecticide resistance of European Ae. albopictus populations focusing on populations from Italy, Albania and Greece

    First evidence of pyrethroid resistance in Italian populations of West Nile virus vector Culex pipiens

    Get PDF
    13openInternationalItalian coauthor/editorCulex pipiens (Linnaeus), one of the most abundant mosquito species in Europe, plays a crucial role in the endemic transmission of West Nile virus and caused the large outbreak with >1600 human cases in 2018. Although evidence of resistance to pyrethroids has been reported for Cx. pipiens populations from Spain and Greece, resistance monitoring has been largely neglected in Italy. Herein, we investigate susceptibility of Italian Cx. pipiens populations to the pyrethroids permethrin and deltamethrin. Results from WHO-tube-bioassays revealed mortalities ranging from 14–54%, indicating high levels of resistance, in four out of 10 populations exposed to permethrin (0.75%) and of 63% in one of three populations exposed to deltamethrin (0.05%). Reduced susceptibility (mortality<98%) was detected in almost all other populations. A clear association is shown between the resistant phenotype and the presence of kdr-alleles in position 1014 of the VSSC, strongly suggesting its role in reducing susceptibility. The study provides the first evidence of pyrethroid-resistance in Italian Cx. pipiens populations and reports levels of resistance paralleled in the European region only in Turkey. This highlights the urgent need to implement insecticide-resistance management plans to restore the efficacy of the nowadays only chemical weapon available to control arbovirus transmission in Europe.openPichler, Verena; Giammarioli, Carola; Bellini, Romeo; Veronesi, Rodolfo; Arnoldi, Daniele; Rizzoli, Annapaola; Lia, Riccardo Paolo; Otranto, Domenico; Ballardini, Marco; Cobre, Pietro; Serini, Paola; Della Torre, Alessandra; Caputo, BeniaminoPichler, V.; Giammarioli, C.; Bellini, R.; Veronesi, R.; Arnoldi, D.; Rizzoli, A.; Lia, R.P.; Otranto, D.; Ballardini, M.; Cobre, P.; Serini, P.; Della Torre, A.; Caputo, B
    • 

    corecore