1,620 research outputs found
Inhibition of epidermal growth factor-dependent protein tyrosine phosphorylation by phorbol myristate acetate is mediated by protein tyrosine phosphatase activity
AbstractIncubation of HER 14 cells with phorbol myristate acetate (PMA) decreases epidermal growth factor (EGF)-dependent protein tyrosine phosphorylation, except for a 40-kDa MAP kinase II-like protein, whose tyrosine phosphorylation is further enhanced. The inhibitory effect of PMA on EGF-dependent protein tyrosine phosphorylation is reversed if cells are pre-incubated with a combination of Na3VO4 and NaF, two known inhibitors of protein tyrosine phosphatase activity. Protein tyrosine phosphatase activity of cell homogenate was measured on immunopurified EGF receptor, and was found to be enhanced in PMA-treated cells. These data suggest that the inhibitory effect of PMA on EGF-dependent protein tyrosine phosphorylation in HER14 cells may be mediated by protein tyrosine phosphatase activity
Thioredoxin promotes survival signaling events under nitrosative/oxidative stress associated with cancer development
Accumulating mutations may drive cells into the acquisition of abnormal phenotypes that are characteristic of cancer cells. Cancer cells feature profound alterations in proliferation programs that result in a new population of cells that overrides normal tissue construction and maintenance programs. To achieve this goal, cancer cells are endowed with up regulated survival signaling pathways. They also must counteract the cytotoxic effects of high levels of nitric oxide (NO) and of reactive oxygen species (ROS), which are by products of cancer cell growth. Accumulating experimental evidence associates cancer cell survival with their capacity to up-regulate antioxidant systems. Elevated expression of the antioxidant protein thioredoxin-1 (Trx1) has been correlated with cancer development. Trx1 has been characterized as a multifunctional protein, playing different roles in different cell compartments. Trx1 migrates to the nucleus in cells exposed to nitrosative/oxidative stress conditions. Trx1 nuclear migration has been related to the activation of transcription factors associated with cell survival and cell proliferation. There is a direct association between the p21Ras-ERK1/2 MAP Kinases survival signaling pathway and Trx1 nuclear migration under nitrosative stress. The expression of the cytoplasmic protein, the thioredoxin-interacting protein (Txnip), determines the change in Trx1 cellular compartmentalization. The anti-apoptotic actions of Trx1 and its denitrosylase activity occur in the cytoplasm and serve as important regulators of cell survival. Within this context, this review focuses on the participation of Trx1 in cells under nitrosative/oxidative stress in survival signaling pathways associated with cancer development.Brazilian Funding Institutions: Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed São Paulo, Paulista Med Sch, Ctr Cellular & Mol Therapy CTCMol, Dept Biochem, São Paulo, SP, BrazilKarolinska Inst, Div Biochem Med Biochem & Biophys, Stockholm, SwedenNYU, Sch Med, New York, NY 10016 USAUniv Fed São Paulo, Paulista Med Sch, Ctr Cellular & Mol Therapy CTCMol, Dept Biochem, São Paulo, SP, BrazilFAPESP: 2007/59617-6FAPESP: 2009/52730-7FAPESP: 2012/10470-1CNPq: 481154/2013-2Web of Scienc
Inhibition of protein tyrosine phosphatase activity by diamide is reversed by epidermal growth factor in fibroblasts
AbstractDiamide (azodicarboxylic acid bis(dimethylamide)) inhibits protein tyrosine phosphatase activity in fibroblasts without altering protein tyrosine kinase activity associated with the epidermal growth factor receptor. The loss of protein tyrosine phosphatase activity caused by diamide is reversed by 2-mercaptoethanol or epidermal growth factor
Arcjet Ablation of Stony and Iron Meteorites
A test campaign was conducted placing meteorites in the 60 MW plasma Arcjet Interaction Heating Facility at NASA Ames Research Center, with the aim to achieve flight-relevant conditions for asteroid impacts in Earth's atmosphere and to provide insight into how meteoritic materials respond to extreme entry heating environments. The test conditions at heat flux of 4000 W/m2 and 140 kPa stagnation pressure are comparable to those experienced by a 30-meter diameter asteroid moving at 20 km/s velocity at 65 km altitude in the Earth's atmosphere. Test objects were a stony type H5 ordinary chondrite (Tamdakht) and an iron type IAB-MG meteorite (Campo Del Cielo), and included the terrestrial analogs Dense Flood Basalt and Fused Silica. All samples were exposed for only a few seconds in the plasma stream. Significant melt flow and vaporization was observed for both the stony and iron meteorites during exposure. Mass loss from spallation of fragments was also observed. Vapor emitted atomic lines from alkali metals and iron, but did not emit the expected MgO molecular band emissions. The meteoritic melts flowed more rapidly, indicating lower viscosity, than those of Fused Silica. The surface recession was mapped. The effective heat of ablation derived from this showed that ablation under these conditions occurred in the melt-dominated regime. Ablation parameters have an effect on ground damage estimates. A bias in ablation parameters towards the melt-dominated regime would imply that impacting asteroids survive to lower altitude, and therefore could possibly have airbursts with a larger ground damage footprint
Semilinear mixed problems on Hilbert complexes and their numerical approximation
Arnold, Falk, and Winther recently showed [Bull. Amer. Math. Soc. 47 (2010),
281-354] that linear, mixed variational problems, and their numerical
approximation by mixed finite element methods, can be studied using the
powerful, abstract language of Hilbert complexes. In another recent article
[arXiv:1005.4455], we extended the Arnold-Falk-Winther framework by analyzing
variational crimes (a la Strang) on Hilbert complexes. In particular, this gave
a treatment of finite element exterior calculus on manifolds, generalizing
techniques from surface finite element methods and recovering earlier a priori
estimates for the Laplace-Beltrami operator on 2- and 3-surfaces, due to Dziuk
[Lecture Notes in Math., vol. 1357 (1988), 142-155] and later Demlow [SIAM J.
Numer. Anal., 47 (2009), 805-827], as special cases. In the present article, we
extend the Hilbert complex framework in a second distinct direction: to the
study of semilinear mixed problems. We do this, first, by introducing an
operator-theoretic reformulation of the linear mixed problem, so that the
semilinear problem can be expressed as an abstract Hammerstein equation. This
allows us to obtain, for semilinear problems, a priori solution estimates and
error estimates that reduce to the Arnold-Falk-Winther results in the linear
case. We also consider the impact of variational crimes, extending the results
of our previous article to these semilinear problems. As an immediate
application, this new framework allows for mixed finite element methods to be
applied to semilinear problems on surfaces.Comment: 22 pages; v2: major revision, particularly sharpening of error
estimates in Section
Cellular glucose-6-phosphate dehydrogenase (G6PD) status modulates the effects of nitric oxide (NO) on human foreskin fibroblasts
AbstractGlucose-6-phosphate dehydrogenase (G6PD) plays an important role in cellular redox homeostasis, which is crucial for cell survival. In the present study, we found that G6PD status determines the response of cells exposed to nitric oxide (NO) donor. Treatment with NO donor, sodium nitroprusside (SNP), caused apoptosis in G6PD-deficient human foreskin fibroblasts (HFF1), whereas it was growth stimulatory in the normal counterpart (HFF3). Such effects were abolished by NO scavengers like hemoglobin. Ectopic expression of G6PD in HFF1 cells switched the cellular response to NO from apoptosis to growth stimulation. Experiments with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and 8-bromo-cGMP showed that the effects of NO on HFF1 and HFF3 cells were independent of cGMP signalling pathway. Intriguingly, trolox prevented the SNP-induced apoptosis in HFF1 cells. These data demonstrate that G6PD plays a critical role in regulation of cell growth and survival
Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability
Background:
The concerted action of three complementary cellulases from Clostridium thermocellum, engineered to be stable at elevated temperatures, was examined on a cellulosic substrate and compared to that of the wild-type enzymes. Exoglucanase Cel48S and endoglucanase Cel8A, both key elements of the natural cellulosome from this bacterium, were engineered previously for increased thermostability, either by SCHEMA, a structure-guided, site-directed protein recombination method, or by consensus-guided mutagenesis combined with random mutagenesis using error-prone PCR, respectively. A thermostable β-glucosidase BglA mutant was also selected from a library generated by error-prone PCR that will assist the two cellulases in their methodic deconstruction of crystalline cellulose. The effects of a thermostable scaffoldin versus those of a largely mesophilic scaffoldin were also examined. By improving the stability of the enzyme subunits and the structural component, we aimed to improve cellulosome-mediated deconstruction of cellulosic substrates.
Results:
The results demonstrate that the combination of thermostable enzymes as free enzymes and a thermostable scaffoldin was more active on the cellulosic substrate than the wild-type enzymes. Significantly, “thermostable” designer cellulosomes exhibited a 1.7-fold enhancement in cellulose degradation compared to the action of conventional designer cellulosomes that contain the respective wild-type enzymes. For designer cellulosome formats, the use of the thermostabilized scaffoldin proved critical for enhanced enzymatic performance under conditions of high temperatures.
Conclusions:
Simple improvement in the activity of a given enzyme does not guarantee its suitability for use in an enzyme cocktail or as a designer cellulosome component. The true merit of improvement resides in its ultimate contribution to synergistic action, which can only be determined experimentally. The relevance of the mutated thermostable enzymes employed in this study as components in multienzyme systems has thus been confirmed using designer cellulosome technology. Enzyme integration via a thermostable scaffoldin is critical to the ultimate stability of the complex at higher temperatures. Engineering of thermostable cellulases and additional lignocellulosic enzymes may prove a determinant parameter for development of state-of-the-art designer cellulosomes for their employment in the conversion of cellulosic biomass to soluble sugars
BARYON-BARYON INTERACTIONS IN LARGE N_C CHIRAL PERTURBATION THEORY
Interactions of two baryons are considered in large chiral perturbation
theory and compared to the interactions derived from the Skyrme model. Special
attention is given to a torus-like configuration known to be present in the
Skyrme model.Comment: 18 pages, REVTEX, 8 uuencoded PS figures appende
- …