1,109 research outputs found

    Strong Sphalerons and Electroweak Baryogenesis

    Get PDF
    We analyze the spontaneous baryogenesis and charge transport mechanisms suggested by Cohen, Kaplan and Nelson for baryon asymmetry generation in extended versions of electroweak theory. We find that accounting for non-perturbative chirality-breaking transitions due to strong sphalerons reduces the baryonic asymmetry by the factor (mt/πT)2(m_t/\pi T)^2 or αW\alpha_W, provided those processes are in thermal equilibrium.Comment: CERN-TH.7080/9

    Topography of the hot sphaleron Transitions

    Full text link
    By numerical simulations in {\it real time} we provide evidence in favour of sphaleron like transitions in the hot, symmetric phase of the electroweak theory. Earlier performed observations of a change in the Chern-Simons number are supplemented with a measurement of the lowest eigenvalues of the three-dimensional staggered fermion Dirac operator and observations of the spatial extension of energy lumps associated with the transition. The observations corroborate on the interpretation of the change in Chern-Simons numbers as representing continuum physics, not lattice artifacts. By combining the various observations it is possible to follow in considerable detail the time-history of thermal fluctuations of the classical gauge-field configurations responsible for the change in the Chern-Simons number.Comment: 11 pages. No figures (sorry, but ps files too huge). Latex file. NBI-HE-92-5

    Smooth stable and unstable manifolds for stochastic partial differential equations

    Full text link
    Invariant manifolds are fundamental tools for describing and understanding nonlinear dynamics. In this paper, we present a theory of stable and unstable manifolds for infinite dimensional random dynamical systems generated by a class of stochastic partial differential equations. We first show the existence of Lipschitz continuous stable and unstable manifolds by the Lyapunov-Perron's method. Then, we prove the smoothness of these invariant manifolds

    Vacuum stability, neutrinos, and dark matter

    Full text link
    Motivated by the discovery hint of the Standard Model (SM) Higgs mass around 125 GeV at the LHC, we study the vacuum stability and perturbativity bounds on Higgs scalar of the SM extensions including neutrinos and dark matter (DM). Guided by the SM gauge symmetry and the minimal changes in the SM Higgs potential we consider two extensions of neutrino sector (Type-I and Type-III seesaw mechanisms) and DM sector (a real scalar singlet (darkon) and minimal dark matter (MDM)) respectively. The darkon contributes positively to the β\beta function of the Higgs quartic coupling λ\lambda and can stabilize the SM vacuum up to high scale. Similar to the top quark in the SM we find the cause of instability is sensitive to the size of new Yukawa couplings between heavy neutrinos and Higgs boson, namely, the scale of seesaw mechanism. MDM and Type-III seesaw fermion triplet, two nontrivial representations of SU(2)LSU(2)_{L} group, will bring the additional positive contributions to the gauge coupling g2g_{2} renormalization group (RG) evolution and would also help to stabilize the electroweak vacuum up to high scale.Comment: 18 pages, 15 figures; published versio

    Colored Resonant Signals at the LHC: Largest Rate and Simplest Topology

    Get PDF
    We study the colored resonance production at the LHC in a most general approach. We classify the possible colored resonances based on group theory decomposition, and construct their effective interactions with light partons. The production cross section from annihilation of valence quarks or gluons may be on the order of 400 - 1000 pb at LHC energies for a mass of 1 TeV with nominal couplings, leading to the largest production rates for new physics at the TeV scale, and simplest event topology with dijet final states. We apply the new dijet data from the LHC experiments to put bounds on various possible colored resonant states. The current bounds range from 0.9 to 2.7 TeV. The formulation is readily applicable for future searches including other decay modes.Comment: 29 pages, 9 figures. References updated and additional K-factors include

    Replacing Recipe Realism

    Get PDF
    Many realist writings exemplify the spirit of ‘recipe realism’. Here I characterise recipe realism, challenge it, and propose replacing it with ‘exemplar realism’. This alternative understanding of realism is more piecemeal, robust, and better in tune with scientists’ own attitude towards their best theories, and thus to be preferred

    A Large Scale Double Beta and Dark Matter Experiment: GENIUS

    Full text link
    The recent results from the HEIDELBERG-MOSCOW experiment have demonstrated the large potential of double beta decay to search for new physics beyond the Standard Model. To increase by a major step the present sensitivity for double beta decay and dark matter search much bigger source strengths and much lower backgrounds are needed than used in experiments under operation at present or under construction. We present here a study of a project proposed recently, which would operate one ton of 'naked' enriched GErmanium-detectors in liquid NItrogen as shielding in an Underground Setup (GENIUS). It improves the sensitivity to neutrino masses to 0.01 eV. A ten ton version would probe neutrino masses even down to 10^-3 eV. The first version would allow to test the atmospheric neutrino problem, the second at least part of the solar neutrino problem. Both versions would allow in addition significant contributions to testing several classes of GUT models. These are especially tests of R-parity breaking supersymmetry models, leptoquark masses and mechanism and right-handed W-boson masses comparable to LHC. The second issue of the experiment is the search for dark matter in the universe. The entire MSSM parameter space for prediction of neutralinos as dark matter particles could be covered already in a first step of the full experiment - with the same purity requirements but using only 100 kg of 76Ge or even of natural Ge - making the experiment competitive to LHC in the search for supersymmetry. The layout of the proposed experiment is discussed and the shielding and purity requirements are studied using GEANT Monte Carlo simulations. As a demonstration of the feasibility of the experiment first results of operating a 'naked' Ge detector in liquid nitrogen are presented.Comment: 22 pages, 12 figures, see also http://pluto.mpi-hd.mpg.de/~betalit/genius.htm
    corecore