713 research outputs found
Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals
Since the time of Charles Darwin, studies of interspecific hybridization have been a major focus for evolutionary biologists. Although this phenomenon has often been viewed as problematic in the fields of ecology, taxonomy and systematics, it has become a primary source of data for studies on speciation and adaptation. Effects from genetic/evolutionary processes, such as recombination and natural selection, usually develop over extended periods of time; however, they are accelerated in cases of hybridization. Interspecific hybrids exhibit novel genomes that are exposed to natural selection, thus providing a key to unravel the ultimate causes of adaptation and speciation. Here we provide firstly a historic perspective of hybridization research, secondly a novel attempt to assess the extent of hybridization among animals and thirdly an overview of the reviews and case studies presented in this theme issue
Benefits and risks of thrombolysis for acute myocardial infarction
Thrombolytic therapy is a major step forward in the treatment of acute
myocardial infarction and may result in up to 50% mortality reduction, provided that it
is administered early (chapter 1). In 80 to 85% of patients with suspected acute
myocardial infarction, a coronary artery is blocked by a clot. With thrombolytic therapy
the closed coronary artery is desobstructed in may cases, is infarct size limited and left
ventricular function preserved. Several thrombolytic agents are available for clinical use:
streptokinase, APSAC, urokinase and more recently recombinant tissue-type plasminogen
activator (rt-PA or alteplase). The latter is the genetically engineered natural occurring
plasminogen activator. Which agent is superior is still a matter of debate. Unlike
streptokinase, APSAC and urokinase, rt-PA dissolves blood clots without degradation
of circulating fibrinogen during in vitro and in animal experiments, provided that the
dose does not exceed a certain threshold. This property of rt-PA is called fibrin
Dilepton-tagged jets in relativistic nucleus-nucleus collisions: A case study
We study the A+B -> l+ l- + jet +X process in nucleus-nucleus collisions at
relativistic energies. The dilepton as well as the jet will pass through the
matter produced in such collisions. The recoiling dilepton will carry
information about the kinematical features of the jet, and will thus prove to
be a very effective tool in isolating in-medium effects such as energy-loss and
fragmentation function modifications. We estimate the contributions due to
correlated charm and bottom decay and we identify a window where they are small
as compared to pairs from the NLO Drell-Yan process.Comment: 7 pages, 9 figures Two figures modified, references adde
Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensemble
The paper studies the spectral properties of large Wigner, band and sample
covariance random matrices with heavy tails of the marginal distributions of
matrix entries.Comment: This is an extended version of my talk at the QMath 9 conference at
Giens, France on September 13-17, 200
Ergodic properties of a generic non-integrable quantum many-body system in thermodynamic limit
We study a generic but simple non-integrable quantum {\em many-body} system
of {\em locally} interacting particles, namely a kicked model of spinless
fermions on 1-dim lattice (equivalent to a kicked Heisenberg XX-Z chain of 1/2
spins). Statistical properties of dynamics (quantum ergodicity and quantum
mixing) and the nature of quantum transport in {\em thermodynamic limit} are
considered as the kick parameters (which control the degree of
non-integrability) are varied. We find and demonstrate {\em ballistic}
transport and non-ergodic, non-mixing dynamics (implying infinite conductivity
at all temperatures) in the {\em integrable} regime of zero or very small kick
parameters, and more generally and important, also in {\em non-integrable}
regime of {\em intermediate} values of kicked parameters, whereas only for
sufficiently large kick parameters we recover quantum ergodicity and mixing
implying normal (diffusive) transport. We propose an order parameter (charge
stiffness ) which controls the phase transition from non-mixing/non-ergodic
dynamics (ordered phase, ) to mixing/ergodic dynamics (disordered phase,
D=0) in the thermodynamic limit. Furthermore, we find {\em exponential decay of
time-correlation function} in the regime of mixing dynamics.
The results are obtained consistently within three different numerical and
analytical approaches: (i) time evolution of a finite system and direct
computation of time correlation functions, (ii) full diagonalization of finite
systems and statistical analysis of stationary data, and (iii) algebraic
construction of quantum invariants of motion of an infinite system, in
particular the time averaged observables.Comment: 18 pages in REVTeX with 14 eps figures included, Submitted to
Physical Review
A narrative analysis of career transition themes and outcomes using chaos theory as a guiding metaphor
In a rapidly changing world of work little research exists on mid-career transitions. We investigated these using the open-systems approach of chaos theory as a guiding metaphor and conducted interviews with seven mid-career individuals chosen for their experience of a significant mid-career transition. Four common themes were identified through narrative analysis, where ‘false starts’ to a career were a common experience prior to finding a career ‘fit’. Career transitions, precipitated by a trigger state and/or event such as a period of disillusionment, were an important part of this ‘finding a fit’ process. Overall, career success outcomes were shaped by a combination of chaos elements: chance, unplanned events, and non-linearity of resultant outcomes. We discuss implications for future research and for practice
Systematic study of the effect of short range correlations on the form factors and densities of s-p and s-d shell nuclei
Analytical expressions of the one- and two-body terms in the cluster
expansion of the charge form factors and densities of the s-p and s-d shell
nuclei with N=Z are derived. They depend on the harmonic oscillator parameter b
and the parameter which originates from the Jastrow correlation
function. These expressions are used for the systematic study of the effect of
short range correlations on the form factors and densities and of the mass
dependence of the parameters b and . These parameters have been
determined by fit to the experimental charge form factors. The inclusion of the
correlations reproduces the experimental charge form factors at the high
momentum transfers (). It is found that while the parameter
is almost constant for the closed shell nuclei, He, O and
Ca, its values are larger (less correlated systems) for the open shell
nuclei, indicating a shell effect in the closed shell nuclei.Comment: Latex, 21 pages, 6 figures, 1 tabl
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
Time-resolved kinetic assessment of the role of singlet and triplet excited states in the photocatalytic treatment of pollutants at different concentrations
[EN] A kinetic-based rationale to assess the role of each excited species in thermodynamically favoured photocatalytic processes at different pollutant concentrations, has been developed and illustrated with new experimental data. Specifically, 2,4,6-triphenylthiapyrylium (TPTP+) salt has been chosen as a representative organic compound capable to act as photocatalyst, and the possible involvement of its excited states in the photodegradation of pollutants commonly found in aqueous ecosystems has been investigated using five chemicals, namely acetaminophen, acetamiprid, caffeine, clofibric acid and carbamazepine. First, steady-state photolysis has been carried out under simulated solar irradiation in the presence of TPTP+, and second, photophysical measurements (fluorescence and laser flash photolysis) have been performed in order to obtain reliable fast kinetic data. Thermodynamic considerations allow ruling out energy transfer processes, while the kinetic results are in good agreement with an electron transfer to the triplet excited state of TPTP+. Hence, the higher the intersystem crossing quantum yield the better. Although quenching of the singlet excited state is also observed, the contribution of this reactive species is only minor, due to its shorter lifetime. In general, the efficiency of a photocatalyst should be enhanced at higher pollutant concentrations, at which the intrinsic decay of the triplet excited state is minimized. (C) 2016 Elsevier B.V. All rights reserved.Financial support from Spanish Government (Grants SEV-2012-0267, CTQ2012-38754-C03-03 and CTQ2015-69832-C4-4-R) and Generalitat Valenciana (Prometeo Program) is gratefully acknowledged. R. Martinez-Haya thanks financial support from Spanish Government (Grant SEV-2012-0267). We also thank support from VLC/Campus.Martínez-Haya, R.; Gomis, J.; Arques Sanz, A.; Marín García, ML.; Amat Payá, AM.; Miranda Alonso, MÁ. (2017). Time-resolved kinetic assessment of the role of singlet and triplet excited states in the photocatalytic treatment of pollutants at different concentrations. Applied Catalysis B Environmental. 203:381-388. https://doi.org/10.1016/j.apcatb.2016.10.042S38138820
- …